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TRANSLATOR'S PREFACE

l. Spin

This book, with the original title Spin wa meguru, is on the physics of spin.
According to Landau and Lifshitz, "[t]his property of elementary particles
is peculiar to quantum theory ... and therefore has in principle no classical
interpretation ... In particular, it would be wholly meaningless to imagine the
'intrinsic' angular momentum of an elementary particle as being the result of
its rotation 'about its own axis.' "1 It is a mysterious beast, and yet its practical
effect prevails over the whole of science. The existence of spin, and the statistics
associated with it, is the most subtle and ingenious design of Nature-without
it the whole universe would collapse.

Spin occupies a unique position in the teaching of physics since a wide range
of physics with differing degrees of difficulty is needed for its understanding.
For this reason, there has been no textbook on quantum mechanics which
describes this subject in sufficient depth. Most textbooks devote at most one
chapter to this subject and give only a utilitarian description. The theory of
relativity, which is essential for the understanding of spin and statistics, is often
forgotten except in deriving the Dirac equation. The relation between spin and
statistics is apparent, yet its basis is hard to understand. Feynman wrote, "It
appears to be one of the few places in physics where there is a rule which
can be stated very simply, but for which no one has found a simple and easy
explanation. The explanation is down deep in relativistic quantum mechanics.

I. Landau L D and Lifshitz EM 1977 Quantum Mechanics (Non-relativistic Theory) Third
Edition p 198 (New York Pergamon).

viii
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This probably means that we do not have a complete understanding of the
fundamental principle involved."2

This book is unique in that the whole of it is used for the discussion of
this usually neglected subject. In his characteristically unhurned and yet rapid
pace, Tomonaga cuts across the whole domain of this subject with minimal use
of mathematics. This is a cozy book, and technical details are often omitted.
Tomonaga's emphasis is on explaining basic ideas and their origins. This makes
the book readable not only for advanced students of physics but also for general
science students.

2. Contents of the Book

In lecture I, Tomonaga starts out with a historical description of atomic spec
troscopy. Three brilliant physicists, Sommerfeld, Lande, and Pauli, grope for an
understanding of the multiplicity of spectra and of the Zeeman effect and find
the need to introduce a new degree offreedom in addition to the orbital angular
momentum ofelectrons. Some readers may find this lecture a little tedious since
Tomonaga goes through the historical development carefully. They may skip
this lecture at the first reading and return to it later.

In lecture 2, Pauli, the youngest and the most profound of the three, imagi
natively assigns this new degree offreedom to the outermost "radiant" electron
rather than to the inner atomic core. Two young Dutch physicists propose the
audacious idea of the spinning electron. After much controversy, the idea is
accepted. Even the most rigorous, Pauli, who initially rejected the idea, gives
his "sanction" when Thomas explains the last persisting discrepancy of a factor
of two using a relativistic transformation.

In lecture 3, Tomonaga goes right to the crux of the matter. He first discusses
the introduction of the new quantum mechanics by Heisenberg and its comple
tion by Dirac in the form of the majestic transformation theory. Pauli presents
the first quantum-mechanical formulation of spin using his 2 x 2 matrices still
based on ad hoc assumptions. Then Dirac, in a single stroke of genius (which
Pauli called acrobatic), derives the relativistic equation which turns out to be the
ultimate theory of electron spin. With Pauli and Dirac, the two geniuses with
very different temperaments and scientific outlooks, this is one of the most
exciting chapters in the book.

In lecture 4, which is allotted to the spin of the proton, the tone of the lecture
changes drastically. Instead of giant physicists who moved the mainstream of
physics, three molecular physicists appear-Hund, Hori, and Dennison. Their
studies of molecular spectroscopy and specific heat lead to the discovery of

2. Feynman R P, Leighton R B, and Sands M 1965 The Feynman Lectures on Physics. Vol. 3,
p. 4-3 (Reading, MA: Addison-Wesley).
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proton spin. Tomonaga discusses extensively the relation between spin and
statistics using the hydrogen molecule.

Lecture 5 flows back to the mainstream ofphysics and discusses Heisenberg's
theory on the helium atom and ferromagnetism. The symmetry requirement
for electron spin (Fermi statistics) results in very large, apparently magnetic,
interactions. Heisenberg used this idea when he introduced isospin in nuclear
physics to account for the large proton-neutron energy difference (lecture 10).

In lecture 6, Tomonaga starts to prepare for the study of relations between
spin and statistics that will be discussed in lecture 8. In another acrobatic act.
Dirac introduces the quantization of the field. Jordan establishes the second
quantization procedure for bosons with Klein and for fermions with Wigner. It
is shown that commutation and anticommutation relations are needed in order to
quantize boson and fermion fields. respectively. Pauli and Weisskopf quantize
the Klein-Gordon equation, together with the MaxwelI equations, and show
that, contrary to earlier remarks by Dirac, the equation is valid for bosons with
spin O,just as the Dirac equation is valid for fermions with spin 1/2. The lecture
discusses the problems of the electron and the positron (Dirac equation) and
Yukawa's meson (Klein-Gordon equation).

Lecture 7 is on spinor algebra. which governs the mathematical description of
spin. According to Ehrenfest, "it is truly strange that absolutely no one proposed
until the work of Pauli ... and Dirac. which is twenty years after special
relativity ... this eerie report that a mysterious tribe by the name of spinor
family inhabits isotropic [three-dimensional] space or the Einstein-Minkowski
[four-dimensional] world." Tomonaga starts with elementary tensor algebra and
proves that spinors are covariant. The algebra sets the stage for the next lecture.
which is the climax of the book.

In lecture 8, Tomonaga discusses the relation between spin and statistics, the
major theme of the book. As mentioned earlier, this is the most fundamental
principle needed for the construction of the universe. Tomonaga first shows
using the standard procedure in the theory of special relativity that for the
Klein-Gordon equation the energy is single-valued and the charge is doubled
valued. while for the Dirac equation it is the opposite. He then shows, folIowing
Pauli, that these results are obtained from the general properties of tensor
algebra if physical quantities are required to be covariant. FinalIy he shows
that boson and fermion fields should be quantized through the commutation
and anticommutation relations, respectively. Hence their statistics are obtained
from the requirement of relativity and the covariance of physical quantities.

Lectures 9 and 10 are twin lectures in which Tomonaga discusses the estab
lishment of nuclear physics in which the new entity isospin plays a major role.
In lecture 9. entitled "The Year of Discovery: 1932." Tomonaga describes how
the neutron was discovered by Chadwick and the positron by Anderson. These
discoveries together with the timely discovery of deuterium by Urey paved
the way to the application of quantum mechanics to nuclei, which once was
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thought to be impossible. It was realized that nuclei were composed of protons
and neutrons rather than protons and electrons and that the rules of spin and
statistics are applicable also to composite particles. Tomonaga shows how the
properties of the neutron, Le., its spin and magnetic moment, were determined
from those of deuterium.

In lecture 10, Tomonaga first discusses the three seminal papers of Heisenberg
which laid the foundation of nuclear physics. From the fact that the binding
energy of a nucleus is proportional to its mass, Heisenberg concludes that the
essence of the nuclear force must be an exchange force. Tomonaga explains
the exchange force using the Hi molecular ion. He then shows how the new
concept of isospin was naturaIly introduced. He shows that the triplet splitting
of the 140, 14N, and 14C nuclei can be explained not only qualitatively but
also quantitatively using the idea of isospin analogously to the triplet state
of atoms. Heisenberg's use of analogy is contrasted to Dirac's acrobatics and
Pauli's frontal assault. Tomonaga then introduces Fermi's theory of l3-decay
and Yukawa's theory of nuclear force. He ends the lecture by noting that the
problem of nuclear physics is not completely solved because of the persisting
difficulty of infinity (he does not touch upon QED anywhere in the book).

Lecture II, 'The Thomas Factor Revisited," plays the role of an addendum.
The late J. D. Jensen asked Tomonaga about the Thomas factor and questioned
whether or not Thomas' argument merely fortuitously gave the correct result,
or if it also gives the correct answer for the anomalous magnetic moments of
the proton and the neutron. Tomonaga derives the magnetic moments first by
the classical relativistic method of Thomas and then from the Dirac equation
with Pauli's term added and shows that indeed they agree with each other. In
the process he goes through the Lorentz transformation in detail.

Lecture 12, the last lecture, is composed of addenda and recoIlections and
relates interesting anecdotes on the discovery of electron spin and Pauli's initial
view of the neutnno. After talking about the Klein-Nishina formula, Tomonaga
reminisces on the development of quantum mechanics and elementary particle
physics in Japan and his own growth as a scientist.

3. Sin-itiro Tomonaga

When I was a high-school student in impoverished postwar Japan, the names
of Hideki Yukawa and Sin-itiro Tomonaga were two lights in the darkness.
They were classmates at Kyoto University, and they received the Nobel Prize
for physics in 1949 and 1965, respectively, for their most fundamental works.
Tomonaga was particularly influential through his textbook on quantum me
chanics, the three volumes of profound books which most physics students used
(the first two volumes have been translated into English and published by North
HoIland). His popular essays on the photon, elementary particles, symmetry, and
other fundamental subjects were widely read and discussed among students. In
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this respect Tomonaga was like Feynman who (together with Schwinger) shared
the Nobel Prize with him for the fonnulation of quantum electrodynamics.
Tomonaga also loved the history of science and wrote the two-volume book
What Is Physics? in which he discussed the development of classical physics
from mechanics and thennodynamics to statistical physics. His description of
Kepler in the book is a masterpiece. Tomonaga was not only a sharp theoretical
physicist but also a very interesting human being. I recommend the recently
published biography Sin-itiro Tomonaga: Life ofa Japanese Physicist (Tokyo:
MYU, 1995) for those of you who would like to know more about his person.3

4. Acknowledgments

This translation was initiated by Mary-Frances Jagod and Charles M. Gabrys,
who were at the time graduate students in my laboratory and applied continual
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whose comments greatly improved the translation. I acknowledge help from
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Takeshi Oka

Enrico Fenni Institute, University of Chicago

3. The book may be ordered directly from MYU Publishing Company, 2-32-3 Sendagi. Bunkyo
ku, Tokyo. 113, Japan.



LECTURE ONE

Before the Dawn

Groping for the Origin of the Spectral Multiplicity

I would like to give several lectures on how spin "spins." My talks will revolve
around spin, but it is also my intention, if I am successful, to talk not only
about spin but also about the development of quantum mechanics so that the
history of the ripening of quantum mechanics might emerge from this. Today I
would like to talk about how the idea of electron spin was born and under what
circumstances. The rotation of an electron about its own axis, i.e., the electron
spin, was first proposed by Uhlenbeck and Goudsmit in 1925. However, there
were many, many intricate developments before this idea was proposed. The
story begins with the discovery of the multiplicity of spectral terms and the
anomalous Zeeman effect. There was a long period of groping before the idea
of electron spin was born.

As you know, Bohr published a theory for the spectrum of the hydrogen atom
in 1913. According to his theory, the spectral term of the hydrogen atom can be
labeled by the principal quantum number n, the subordinate quantum number
k, and the magnetic quantum number m. l Then both nand k take integral values
I, 2, 3, ... , and n :::: k. The size of the electron's orbit is determined by n, and
k determines the shape; k also denotes orbital angular momentum in units of1l.
(Hereafter, all angular momenta will be measured in this unit unless otherwise
stated.) For a given quantum number k, the magnetic quantum number takes
positive and negative integral values

- k S m S k,

I. Bohr used n, Sommerfeld introduced k and m

(I-I)
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and it indicates the component of the angular momentum vector k along the
magnetic field. Inequality (I-I) limits the number ofallowed m values to 2k + I,
and accordingly the number of allowed directions of the vector k is 2k + I.
Probably you know that this is called space quantization ofangular momentum.
From this space quantization the Zeeman effect arises, and a single energy
level will split into 2k + I levels in the presence of an external magnetic field.
(However, this notion will be gradually modified later.)

Now let us remember the selection rules for k and m. The rules are

/'
k + I

k
'\i k - I,

/'
m+ I

m~ m

'\i m-1.

(1-2)

(1-3)

These mean that in a transition k changes only by ± I and m changes only by
±lorO.

Now we can also classify spectral terms of atoms other than H by specifying
n, k, and m. The reason is that, even for atoms other than H, many spectral terms
correspond to an excited state of only one electron in the outermost orbit, which
we shall call the radiant electron. (There are, of course, other states in which
more than one electron are excited, but they will not be discussed here.) Now
we can consider approximately that the radiant electron is moving in an electric
field created by the other electrons, which we shall call the core electrons,
and the atomic nucleus; therefore, we can tentatively regard the field to be
spherically symmetric. If we can do this, then the orbit of the radiant electron
can also be det~rmined by n, k, and m, and just as in the case of hydrogen, n, k,
and m are integers having the same physical meaning. One difference is that the
radiant electron is buzzing around outside the core electrons, and the smallest
value of n is in general greater than I. As you know, in spectroscopy we call
the term with

k = I the S term,

k = 2 the P term,

k = 3 the D term ...

(1-4)

It was soon found, however, that the terms determined by nand k are not
unique, but are composed of many closely spaced levels; in other words, they
have multiplet structure. For example, terms of alkali atoms, except for the S
terms, are all composed of two closely spaced levels, i.e., doublets. The S term is
exceptional and singlet, but as I shall explain later, even this term has potential
doublet character, and if you apply a magnetic field. it splits into two levels.
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Figure I I Spectral terms for alkalis (left) and alkaline earths (rights) Energy is in cm- I

Therefore, we consider all the terms of alkali atoms to be doublets. In figure 1.1
I give as an example the spectral terms of Na. In this figure, the superscript 2
preceding S, P, D, and F means that they are doublet terms. We call this number
the multiplicity.

I give as another example the terms of alkaline earth metals. The right-hand
side of figure 1.1 gives the terms of Mg. Ifwe look at this figure, we immediately
see that the terms can be classified into two groups. In one group all the terms
are singlet; in the other they are all triplet, except for the S term. In this case, the
S term is singlet in both groups. It is impossible to discriminate these two from
the apparent splitting, but the S term of the triplet will split into three when a
magnetic field is applied. In this sense it has the potential character of a triplet,
so we shall put it into the tnplet group. On the contrary, splitting does not occur
for the other S term even when a magnetic field is applied, and we can regard
it as a bona fide singlet term. Again, the superscript on S, P, D, and F gives the
multiplicity of the terms.

Thus, if there is multiplicity of the spectral terms, it is clear that the quantum
numbers n, k, and m are insufficient to account for all the levels. Therefore,
Sommerfeld introduced the fourth quantum numberj in 1920 and used the four
quantum numbers n, k, j, and m. He called this j the inner quantum number.
As before, nand k determine, respectively, the size and shape of the radiant
electron orbit. In addition the quantum number j was introduced to classify the
variety of levels in one multiplet term, and its meaning will be considered later.
Sommerfeld called it the inner quantum number because it classifies the levels
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within one multiplet term. The quantum number m now specifies the sublevels
which are split for a level specified by n,j, k when the atom is in a magnetic field.
This splitting is also a type of Zeeman effect, but its splitting pattern is different
from that before we introduced j. Therefore this new m in the new system does
not necessarily follow inequality (I-I), and both the number of sublevels and
the intervals between them in the Zeeman effect are by and large different from
those found previously. (I shall say later that m satisfies - j :s m :s j.)

Sommerfeld found that ifj is properly chosen, the selection rule for j is

(1-5)

On the other hand, for k, selection rule (1-2) holds as before. As for the quantum
number m, although it differs from the previous m, experiment has shown that
selection rule (1-3) still holds.

Furthermore, according to experiment, there is an additional selection rule
concerning multiplicity which states that transitions occur only between terms
with the same multiplicity or between terms with multiplicity differing by 2. In
the case of alkali atoms, there are only doublets, and for alkaline earths there
are only singlets and triplets. Therefore, this selection rule automatically holds.
However, for titanium, for example, there is a quintet in addition to singlet and
triplet, and vanadium has quartet and sextet in addition to doublet. In these
cases transitions do not occur between singlet and quintet or between doublet
and sextet.

Lande introduced as a supplementary quantum number

Therefore,

multiplicity
R= 2 (1-6)

for singlets

for doublets

for triplets

1
R= 2'
R= I,

3
R= 2....

(1-7)

Then the selection rule for the multiplicity is

/' R+ I

R~ R

'\iR-1.

(1-8)



Figure I 2 Alfred I...aodf (1888-1975). (Courtesy of AlP Meggars Gallery of Nobel Laureates)
Figure 1.3 ArnoIdJ W Sommerfeld (1868-1951). (Courtesy ofAlP Emilio Segr! VISual Arehives
Physics Today Collection)
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What number should be used as the inner quanlum number? We must make
it such that selection rule (1-5) is followed. Butj cannot be delennined from
(1-5) alone because even ifj satisfies (1-5), you can add to it or subtracl from
it an arbitrary number and slill it will salisfy (1-5). Between 1922 and 1925
Sommerfeld, Lande. and Pauli had been in hot competition trying to classify
multiplicity and its Zeeman effect. BUI the three of them each used a different
inner quantum number and supplemental)' quantum numbers.

I have already shown in figure 1.1 the spectral tenns of Na and Mg. In this
figure the S tenn looks like a singlet so I used one box ([J); for the P, D, and F
terms, singlet is expressed by Q doublet by rn. triplet by ITIl The problem
now is thai for each of these boxes, we must assign a specific inner quantum
number. Now Sommerfeld, Lande, and Pauli did it in three different ways. (For
brevily, I shall call their conventions S·, L·, and p., respectively.) I give in
lables 1.1 and 1.2 examples of inner quantum number for each convention. In
table 1.1 the numbers in the double boxes are the inner quantum numbers for
the doublet alkali atoms, and in lable 1.2 the numbers in single boxes and triple
boxes are the inner quantum numbers for singlet and triplet alkaline earths,
respectively. The values are different for each convention. I just express the
inner quantum number by j in S·, J in L·, and jp in p•. For the supplementary

Fi8ure I 4 Wolf8an8 Pauli
(1900-1958). IPholograph by CERN.
Courtesy of AlP Emilio Se8ri' Visual
Archi~1



Table l.l Inner Quantum Numbers for Alkali Doublet Terms

25 2 p 20 2F

k= I 2 3 4

multiplicity - I ja = 0 I 2 3
Sommerfeld jo =

2
j= [!E] [!E]13/21 13/21~ ~17/21

I
ja = k - I,

2
Ija - jol :;: j :;: Ija + jol. -j:;: m:;: j (1-9)5

I 3 5 7
multiplicity K=

Lande R= 2 2 2 2
2

J= IT] IT]0 00 0~
K =k- ~ I I I I

=1 2 ' IK - RI + 2 :;: J :;: IK + RI- 2' -J + 2 :;: m :;: J - 2 (I-9lL

multiplicity + I k= I 2 3 4
Pauli r=

2
jp = 13/21 ~15/21 15/21~ ~19/21

3
k =k, Ik - rl + I :;: Jp :;: Ik + rl - I,=2 -jp+l:;:m:;:jp-1 (I-9)p



8 LECTURE I

Table 1.2(a) Inner Quantum Numbers for the Alkali Earth Singlet Tenn

IS Ip ID IF

k= I 2 3 4

ja = 0 I 2 3
Sommerfeld jo = 0 j= [Q] ITl GJ 0

I 3 5 7
I K=

2 2Lande R=- 2 2
2

IT23J ~ ~ [iliJJ=

k= I 2 3 4
Pauli r=1

jp = ITl GJ 0 liJ

Table 1.2(b) Inner Quantum Numbers for the Alkali Earth Triplet Tenn

3S 3p 3D 3F
k= I 2 3 4

ja = 0 I 2 3
Sommerfeld jo = I j= ITl [Q]ITlGJ ITlGJ0 GJ0liJ

3 5 7
3 K=

2Lande R=- 2 2 2
2

~ IT23J~~ ~~[iliJ ~[iliJ~J=

k= I 2 3 4
Pauli r=2

jp = GJ ITlGJ0 GJ0liJ 0liJ~

quantum number concerning the multiplicity, in L* we use R as defined in (1
6), in s* jo == R - 1/2, and in p* r == R + 1/2. As for the quantum number
which specifies S, P, D, F, etc., we use k as before in P*, but ja = k - 1 in S*,
and K = k - 1/2 in L*. Formulas (I-9)s, (I-9k, and (l-9)p prescribe how to
determine the inner quantum number when the subordinate quantum number
and multiplicity are given.

( I-9)s

(1-9k

Ija - jol ::: j ::: Ija + jol, - j ::: m ::: j
1 1

IK - RI + 2 ::: J ::: IK + RI - 2'
1 1

-J+-<m<J--2 - - 2
Ik - rl + 1 ::: Jp ::: Ik + rl- 1, -jp + 1 ::: m ::: jp -(D-9)pk =k,

ja = k - 1,
1

K =k --,
2
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As an example, let me describe S*. First we determine jo by using the formula
jo = (multiplicity - 1)/2 on the left-hand side of (I-9)s. Next we determine
ja by using ja = k - I. Then we use the inequality Ija - jo I :s j :s Ija + jo I to
determine the allowed values ofj and finally use the last inequality - j :s m :s j
to determine the allowed values ofm foreachj. The numberofm values, 2j +I,
gives the number of split levels in the Zeeman effect. We can do the same for
L* and P*, and we get the numbers in boxes in this way. The readers should try
it for themselves. The relations among the quantum numbers for S*, P*, and
L* are as follows

I
j = J - - = jp - I;

2
I

jo = R - 2 = r - I;

I
ja = K - 2 = k - I.

(1-10)

All these quantum numbers satisfy selection rules, and for the magnetic quan
tum number you get exactly the same results regardless of the convention.
The quantum numbers for singlets and triplets are given in tables 1.2(a) and
1.2(b). The prescriptions to determine the inner quantum number and magnetic
quantum number are exactly the same as for doublets as given in (1-9).

Now I have given you three conventions to determine inner quantum num
bers. Each has advantages and disadvantages. I shall say laterthat s* is followed
now, but that time was one of groping, and it was very difficult to favor any
one of the three. So I proceed without favoring any of them. This way, perhaps,
you can better understand the tenor of that age.

I will not say any more on these conventions, but I would like to delve into
the reason for the multiplicity and how people thought about this problem.

As I told you in the beginning, we assume when considering atomic spectra
that the outermost electron is circling the atomic core. As long as we consider the
core spherically symmetric, the energy of the electron does not depend on the tilt
of the plane of the orbit unless you apply an external magnetic field. However,
if the core is not spherically symmetric, e.g., if the core has angular momentum,
the story is different. In this case the core has a magnetic moment associated
with its angular momentum, and there will be a magnetic field which is axially
symmetric about the axis of angular momentum. If this is the case, there will
be an internal Zeeman effect due to this internal magnetic field. Normally, the
angular momentum vector of the electron will be space-quantized with respect
to this symmetry axis of the core, and for each orientation the value of the
magnetic interaction between the internal magnetic field and the orbital motion
will be different. This splits the term corresponding to certain nand k into
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multiplets. This must be the reason for the multiplets. Or so it was thought at
that time.

However, the internal Zeeman effect which occurs from this differs from the
Zeeman effect from an external magnetic field in one essential point. For
the external Zeeman effect for the level with subordinate quantum number
k, the angular momentum is quantized with 2k + I values, and the term always
splits into 2k + I terms. However, for the internal Zeeman effect the number
of split levels does not always reach 2k + I. This is for the fol1owing reason.

Let us take the angular momentum of the core as r and the orbital angular
momentum of the radiant electron as k. Then the total angular momentum
j = r + k, and

Ir - kl ::; j ::; Ir + kl· (1-12)

The magnitude of the total angular momentum j can take only integral values
in this range. From this the possible values ofj number are

{
2r + I if r ::; k
2k + I if r :::: k.

(1-13)

Therefore, the number of levels in the internal Zeeman effect, Le., the number
of levels of multiplet terms, is 2r + I or 2k + I depending on whether r ::; k or
r :::: k.

Next we discuss what type of Zeeman effect appears if an external magnetic
field is applied to an atom that already has such multiplets. As I shal1 explain
later, if the applied magnetic field is not that strong, then the total angular
momentum j is further space-quantized along the magnetic field. In this case
m, the component ofj along the magnetic field, takes integral values given by

-j::;m::;j, (1-14)

and accordingly, each level of a multiplet splits further into 2j + I sublevels.
We can consider this the Zeeman effect of the multiplet term.

To see whether we can explain the experimental results by this idea, let us
just consider the simplest case of r = O. In this case for al1 values of k, the
first of (1-13) is valid, and the number of levels is always I. Therefore, only a
singlet term appears. It seems that we can explain the singlet term of Mg this
way. Next, let us put r = I. In this case also the first of (1-13) is valid for al1
values of k, and therefore the number of levels is always 2r + I = 3. However,
we cannot say that this explains the triplet terms of Mg because according to
experimental results, the number of S terms in Mg is always I, not 3. Also, for
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singlet terms as well as for triplet terms, the number of sublevels split by the
external Zeeman effect cannot be explained by this approach.

Furthermore, if we want to explain the doublet terms of alkali atoms using
(1-13), we cannot take integral values of r, so let us try r = 1/2. Then the first
part of (I-D) is valid for any value of k, and the number of levels becomes
2r + I = 2. However, the number of levels of the S term in alkali atoms is also
I, so we cannot fully explain the doublet term.

For these reasons one cannot persist in thinking that the core angular momen
tum is causing the multiplet terms. However, it occurred to Lande to create a
substitutional model for the real atom simply to try to explain the experimental
results. The inequalities in table I.I seem to mimic (1-12) and (1-14), which
did not explain the experimental results, but somehow the entries in table 1.1
look similar, so he just made a tentative model and called it an Ersatzmodell
("substitutional model") and later examined how faithfully it represents the
real atom.

Now we explain Lande's idea. Lande thought in his Ersatzmodell that the core
had angular momentum R and its magnitude R is

R = multiplicity
------=2----'--- (I-15k

Moreover, the orbital angular momentum of the radiant electron is K, and its
magnitude K is

I
K = k --.

2
(I-16k

Needless to say, k is the subordinate quantum number. (In Sommerfeld's theory k
is at the same time the orbital angular momentum, but Lande changed it slightly
[to K].) If we form the total angular momentum of the system by addition of
the two angular momenta, that is

J=R+K.

and we assume for J the inequality

I I
IR - KI + - < J < IR + KI--2 - - 2'

(I-17k

(I-18k

then in this case, depending on whether IR - K I is an integer or a half-integer,
the allowed values of J become half-integers or integers. This prescription for
angular momentum addition differs from (1-12) in that ± I/2 is on both sides
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of the inequality. Furthermore, Lande assumes for the component m along the
magnetic field the inequality

I I
- J + - < m < J --.2 - - 2 (I-19k

Note that again ± I12 appears here. Instead of the unsuccessful model with
k, he uses K = k - 1/2 [(I-16k] and also an inequality differing by ±1/2
[(I-18k] to patch up the problem. In the Lande-type prescription (I-9k given
in table 1.1 for the inner quantum number and the magnetic quantum number,
he is considering this Ersatzmodell.

In table 1.1, in addition to Lande's prescription, I have given Sommerfeld's
and Pauli's prescriptions, which we can consider as Sommerfeld's Ersatzmodell
and Pauli's Ersatzmodell. For example, for Sommerfeld's Ersatzmodell we
could consider as follows.

First we consider the core angular momentum as jo. Then its magnitude is

multiplicity - I
jo = ---=---'----

2
(I-15)s

and if we write the orbital angular momentum as ja, then its magnitude is

ja = k - I. (I-16)s

We can add these two angular momenta to get the total angular momentum

(I-17)s

Then the inequality for j is

(1-18)s

and finally, corresponding to the space-quantization ofj in an external magnetic
field, we have

- j ::s m ::s j. (I-19)s

In this model Sommerfeld took for the orbital angular momentum not k but
k - I in order to take care of the failure we discussed earlier. If this is done,
we do not have to change the inequality (1-12). Sommerfeld is the originator of
space-quantization, and perhaps he did not want to change the original formula.
On the other hand, Lande put ± I12 here and there in order that the spacing rule
which we shall discuss later be correctly taken care of.
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You might think that Sommerfeld himself thought about this model, but
that is not the case as I explain. Therefore this model is really my version of
Sommerfeld's model. Actually, Sommerfeld's idea is essentially the same as the
model I have just given, but he does not say thatjo is the core angular momentum
or that ja is the orbital angular momentum. If I have to tell you exactly what
he says, he says as follows: "We assume the inner quantum number j to be the
total angular momentum of the atom in the excited state. Then this total angular
momentum is a vector sum of the unexcited atomic angular momentum jo and
the angular momentum of excitation ja (lmpulsmoment ja der Anregung). As
for ja, ja = 0, 1,2, ... for S term, P term, D term, etc." (What is meant by
unexcited is not the state with minimum principal quantum number n but the
state of minimum orbital angular momentum. He later replaced this word with
the phrase S state.) He does not use jo = (multiplicity - I)/2, but rather he
says that ifhe calculates multiplicity from his assumption, he finds 2jo + I. But
this is essentially the same as saying that in order to match experimental results
jo must match this form. Therefore what he has done is exactly the same as my
version of Sommerfeld's model.

You are already baptized in the new quantum mechanics. Therefore you must
have immediately realized when you heard about my version of Sommerfeld's
model that in the new quantum mechanics the magnitude of orbital angular
momentum is not k but e = k - I. Therefore Sommerfeld's ja is nothing
but the orbital angular momentum l itself! Then it is quite obvious that the
total angular momentum is not j = jo + k but j = jo + ja. Therefore this
model is nothing but the revised model of the new quantum mechanics, which
takes care of the failure I discussed earlier. However, Sommerfeld at that time
did not call ja orbital angular momentum but called it angular momentum of
excitation. He may have chosen such an unnatural phrase because at that time
it was generally thought that an orbit with angular momentum 0 could not be
realized because the electron would hit the nucleus. Sommerfeld wrote in 1928
the wave-mechanical supplement (Wellenmechanischer Ergiinzungsband) to
his famous Atomic Structure and Spectral Lines, in which he derives, using
the new quantum mechanics, that the size of orbital angular momentum is
e= k - I and gives the following footnote. "In the last version of my book I
introduced ja = k - 1, and I discussed that in treating Lande's form (which
will be discussed later) we should be using ja = k - I instead of k. From now
on, we will write this quantity erather than the inappropriate ja."

However, as you see, it is obviously unnatural as a model to consider that the
total angular momentum is obtained by vector addition of the minimum orbital
angular momentum and the angular momentum of excitation. For this reason
Lande rejected Sommerfeld's model.

As for Pauli's Ersatzmodell, it does not alter the orbital angular momentum k
but adds ± I on the inequalities (1-12) and (1-14), trying to patch up the failure.
However, as I tell you later, Pauli never really believed in models, and he is
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consistently trying to avoid the model-type mentality. Therefore we shall not
discuss Pauli's model further.

Now what results did the Ersatzmodel/ yield? First Lande succeeded in de
riving the rule for the multiplet splitting, which states that spacings between
neighboring multiplet levels are in the ratio of simple integers. Now we shall
plunge into this problem.

You must know that if an electron revolves in an orbit, it generates a magnetic
moment. Just as we chose to measure angular momentum in units of 11, it is
convenient to measure magnetic moment in units of the Bohr magneton. As
you know, the Bohr magneton is

Bohr magneton
e1l

2mc
( 1-20)

(I remind you that e is the elementary charge and that the charge of an electron
is -e.) If we do that, then the magnetic moment associated with the orbital
angular momentum is

11K =-K. (1-21)

Here, of course, K is the orbital angular momentum in Lande's model. The
core has the angular momentum R, and that will also have a magnetic moment,
which I write

IlR = -goR. (1-22)

Here gO is undetermined, and we will simply fit its value to experimental results.
In general, angular momentum and magnetic moment go together, and the ratio
of the magnetic moment to the angular momentum is called the g-factor. That is,

I magnetic moment I
g= I angular momentum I

(1-23)

For the orbital motion g = I, and for the core g = go.
When there are two magnetic moments 11 K and 11 R in an atom, there should

be a magnetic interaction between them, and therefore the magnetic energy is
added to the usual energy of orbital motion, which is determined by nand k.
This additional energy changes the atomic energy levels slightly, and we write
the change Wmag as a constant times the inner product of Rand K

Wmag = constant· (R • K), (1-24)
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as if the core magnetic moment is concentrated at one point. (This constant will
be discussed in the next lecture.) Now the problem is to calculate R· K, Le., to
express R . K in terms of R, K, and J.

This calculation can be done right away from the definition ofJ, (I-17k. We
square both sides of (I-17k and find

Therefore,

I 2 2 2R.K=-(1 -K -R).
2

I 2 2 2Wmag = constant."2(1 - K - R ).

(1-25)

(1-26)

From this formula we can calculate the intervals within one multiplet. Namely,
we fix K and R and take the difference between one J and its neighboring J,
that is J - I,

D. Wmag = constant . ~[J2 - (1 - 1)2] = constant· (J - ~). (1-27)

I give in table 1.3 the ratio of the intervals obtained from this formula for
the triplet terms of alkaline earths. Lande went through an enormous amount of
experimental data and confirmed that this formula explains experimental results
very welI except for very light atoms such as He and Li.

This ends our consideration of the splitting pattern within a multiplet. But
as we shalI discuss in the next lecture, we can calculate not only the ratio of
D. Wmag between pairs of levels but the separation D. Wmag itself. ActualIy, from
this study of the energy separation between levels, Lande ended up abandoning
his own idea that the reason for the multiplets is the magnetic interaction (1-24).
When Lande was studying the splitting pattern, he was not realIy thinking of
the actual magnitudes, he not being God. Rather, he was fulI of hope for his
own model because (1-27) explains experiments so well. I shalI discuss this in
the next lecture.

Table 1.3 Splitting Ratios in Tnplet Terms

15 1p 1D 3F

~ [!E]~~ ~~17/21 ~17/2119/21

I~I~I I~I~I I~I~I

I : 2 2:3 3:4
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The other thing which Lande calculated from his Ersatzmodell is related to the
Zeeman effect of the multiplet term. As I told you, the angular momenta K
and R produce magnetic moments 11K and IlR according to (1-21) and (1-22).
Thus, the atom as a whole will possess a total magnetic moment

11 = -(K + goR). (1-28)

Then the atomic energy in a magnetic field has to be the field-free energy plus

eh
EH = --(H '11),

2mc
(1-29)

and therefore the atomic level changes also with magnetic field. In the limit
when the external magnetic field is very much smaller or larger than the internal
magnetic field, we can calculate this energy by using simple approximations.

Let us start from the weak magnetic field. We first have to realize that the
total angular momentum J = K + R is a conserved quantity if there is no
magnetic field. However, if the atom is in a magnetic field, the magnitude of J
is not necessarily conserved. (In contrast, the component m along the magnetic
field is conserved independently of the strength of the field.) However, if the
magnetic field is sufficiently weak, 1 is also approximately conserved, and we
shall proceed under this assumption.

First we put gO = I. In this case

11 = -(K + R) = -J. (1-28')

Therefore, H '11 = -H, J = -Hm if we use the magnetic quantum number.
The change of energy is, from (1-29),

eh
WH = EH = --Hm,

2mc

I I
-1 + - < m < 1 --.2 - - 2 (1-30)

(The m in ehj2mc is the electron mass, and you shouldn't mistake it for the
magnetic quantum number m. This is confusing, but please put up with it.)
In this case in the Zeeman effect, one level splits into sublevels separated
by (ehj2mc)H, and the number of sublevels is 21. (Note that if we use
Sommerfeld's quantum number j, the number is 2j + I.) In general, if intervals
between sublevels can be expressed in this form, we call it the normal Zeeman
effect. This is the only Zeeman effect in the classical theory of Lorentz and
Larmor. If we consider the case with gO # I, however, a different kind of
Zeeman effect will result. Such a freakish pattern is called the anomalous
Zeeman effect. According to experiments, the Zeeman effects for singlet terms
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are all nonnal, and for other multiplets almost all are anomalous except for a
few cases. Now we consider the case of gO # I.

When gO # I, (1-28') is no longer valid. In other words, 11 # -J, and
therefore H • 11 in (1-29) is not a conserved quantity. Therefore when gO # I,
we cannot use (1-29) as the variation of energy WHo When the magnetic field
is small, it is known that approximately

eh
WH = --(H· (Il)).

2mc
(1-29')

Here (Il) is the 11 averaged over time for H = O. (11, unlike J, changes with
time.) If we write the component of 11 along J as 1111, then (Il) = (Illl)' If we
write 1111 explicitly,

We then write (1-28) in the fonn

11 = -{J + (gO - I)R}

and substitute this equation into the fonnula for 1111' We immediately obtain

[
J .R](H· (Il)) = - I + (gO - I}y H· J.

Using the same argument that we used to obtain (1-25) in the discussion
of multiplet splittings, we obtain J . R = (12 + R2 - K 2 )j2. We have
therefore

(H. (Il)) = -g(H. J)

[

)2 + R2 _K2]
g = I + (gO - I) 2)2 .

Therefore, for gO # I we can write

(1-31 )

(1-31')

eh
WH= -Hgm,

2mc

I I-) + - < m <) --
2 - - 2'

(1-32)

and the limitation on m is identical to that for (1-30). This is the fonnula for
the anomalous Zeeman effect derived from Lande's Ersatzmodell. We might
mention that (1-31) can be taken to mean that 1111 is proportional to IJI with a
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ratio g. Therefore, we can consider this g as the g-factor for the entire atom.
On the other hand, Lande went through mountains of experimental data on

the g-factor then available and determined the empirical formula

[
J2 _ 1 + R2_ K2]

gexp = I + 2 (j2 - :t) .

If we compare this formula with (1-31 '), it suggests that

gO = 2.

(I-3l)exp

(1-33)

However, even if we assume this value for gO, the experimental and theoret
ical values do not match completely. This is because (1-31 )exp contains the
mystenous number 1/4, which does not exist in (1-31 '). Lande's Ersatzmodell
does not give a nice rule for the g-factor as it did for the ratio of splittings
within a multiplet. However, because (1-31 ') and (I-3l)exp look so similar, he
had great hope for his Ersatzmodell, so much so that Pauli warned him not
to trust the model too much. I might add here that among the three models
Lande's convention is the only one that gives such good agreement. In de
riving (1-26) and (1-31') Lande did not use his characteristic formulas (1-6)
or (1-9k anywhere. Therefore, similar formulas can also be derived from the
other conventions. For example, in Sommerfeld's convention we have instead
of (1-26)

1.2 ·2 .2
Wmag = constant ."2() -1a -10)'

and we get instead of (1-31 '),

·2 ·2 ·2
= 1+( _ 1)1 + 10 - 1a

g gO 2j2

(I-26)s

(I-3I')s

The difference in the result arises from the difference in the value of the quantum
numbers used here. We give in figure 1.5 the schematic pattern of the Zeeman
effect for the 2 P term.

Now we go on to the case of a strong magnetic field. The experiment demon
strating the Zeeman effect under a strong magnetic field has been performed
extensively by F. Paschen and E. Back, wherefore this type of Zeeman effect
is often called the Paschen-Back effect. Their experiment showed that under a
strong magnetic field the spacings of the split levels are all integral multiples of
(eh/2mc)H. For some muitiplets this integer is I, and the splitting resembles
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the normal Zeeman effect. However, theoretically this observation is only
superficial.

Modeling an atom under a strong magnetic field is much simpler than under
a weak field because, if the external magnetic field is very much stronger than
the internal one, then both the atomic core and the radiant electron are strongly
influenced by the external magnetic field, and we can ignore the effect of the
internal magnetic field. In that case, the orbital angular momentum K and the

core angular momentum R will be independently space-quantized with respect
to the external magnetic field H. (We use Lande's convention here.) In other

words, if we make the component of K along H, m K , and the component of R
along H, mR, then mK and mR take integral or half-integral values satisfying

I 1
- K + - < mK < K - -2 - - 2'

1 I
-R + - < mR < R - -. (1-34)2 - - 2

It is obvious then that the magnetic quantum number m is given by

(1-35)

(As I told you earlier, the magnitude J of J is not conserved if the magnetic
field is very strong, but the component m along the magnetic field is conserved.)

Therefore using (1-28), the component of the magnetic moment J1. along the
H-axis becomes -(m K + gom R), and if we substitute this into (1-29), we
immediately obtain
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(1-36)

We can compare this formula with experiment and determine go. Since the
interval between split levels is an integral multiple of (eh/2mc)H, gO must be
an integer, and from the observed splitting we see

gO = 2. (1-37)

In this case unlike the case of a weak magnetic field, formula (1-36) results
not only from Lande's convention but also from Sommerfeld's and Pauli's
conventions. (I told you earlier that for the component of angular momentum
along the field, the same result is obtained regardless of the convention.) When
gO = 2, agreement with experiment is perfect. So contrary to the case of a
weak magnetic field where agreement is merely suggested, in the strong case
we may consider that gO is definitely determined to be 2. Furthermore, (1-37)
can also be confirmed from experiments under a strong magnetic field such as
the Einstein-de Haas experiment. (I shall talk about this experiment later.) In
figure 1.6, I show the Paschen-Back effect for a 2 P term. I show in the figure
how the sublevels shift as the magnetic field is changed from the weak to the
strong case. As you see in the figure, the sublevels corresponding to j = 3/2
and j = 1/2 are completely rearranged under a strong magnetic field. This
clearly shows thatj is not conserved under a strong magnetic field.

We have seen that many valid results came out of the Ersatzmodell. However,
from the idea that multiplets result from the core angular momentum, many
peculiar results emerge. This was pointed out by many people, including Lande.
Let me explain this situation using an example. The ground state of the Na atom
is 2S as in figure 1.1, but in L* it has angular momentum J = I. (See table
1.1.) On the other hand, it is experimentally known that Mg+ has the same
number of electrons as Na, and as a result it has spectral terms which are very
similar to those of Na. (Mg+ means the singly ionized, positive ion of Mg. In
general, we will write the singly, doubly, triply ionized cation of atom A as A+,
A++, A+++, etc.) In fact, the ground state of Mg+ is 2S, and it should also have
angular momentum J = I. Now we see that if we add one electron to Mg+, we
get Mg atom. This means that the core of Mg atom is Mg+. You might expect
from this that the core of Mg atom has angular momentum I, but as shown in
table 1.2, that is not the case, and R = 1/2 or 3/2. Therefore, if an electron
approaches Mg+ from outside and the ion becomes a core of Mg, suddenly J
must change from I to either 1/2 or 3/2. Lande did not seem to worry about
this situation, but Pauli deemed it extremely unnatural. For this very reason
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Pauli avoided using the Ersatzmodell and warned others not to place too much
confidence in it.

Around that time many people noted that, if you consider the ground state
of He to be composed of two electrons both in the n = I and k = I
orbit, the ionization energy calculated for the He atom does not agree at all
with experiment. From this discrepancy Lande hypothesized, "Out of the two
electrons in He, one belongs to the core, and the other is the radiant electron,
and the two electrons play entirely different roles in the atom. (E.g., the g-factor
of the former is 2, and that of the latter is I.) Therefore, both electrons cannot be
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in the same orbit of n = I and k = I." Opposing this idea Pauli wrote in a paper
submitted in October 1923 that Lande's interpretation that "the two electrons
are playing entirely different roles" is the classic case of overconfidence in a
model, and this precisely shows the fatal flaw of the model itself. Pauli further
says that this problem of He has to be explained from an entirely different point
of view. For this reason in his paper on the multiplicity, Pauli says from the
beginning, "I can hardly believe the models that are currently being considered.
Why don't we study the rules of multiplet terms just from experimental results?"

In fact, in the ensuing paper, Pauli consistently avoids terms like orbital
angular momentum, core angular momentum, and total angular momentum,
which imply models, and uses only the quantum number k, the quantum number
r, the quantum number jp, etc. Even when he had to usej from Sommerfeld's
convention, he does not call it total angular momentum but total angular
momentum quantum number and defines that as "the maximum of the magnetic
quantum number m." (You might notice that this is in contrast to Sommerfeld,
who said, "Let us assume j is the total angular momentum.") When the Zeeman
effect is observed, sublevels appear which are symmetric with respect to the
original level, and for Pauli the direct numbering of this sublevel means that
m has the most fundamental meaning in that it directly relates to experiment.
For himj is a more indirect thing which is defined as the maximum of m. This
logic is the reverse of Sommerfeld's and Lande's, and it characterizes Pauli's
approach that he relies just on experimental results and not on a model.

Now then, what rules did Pauli arrive at and what methods did he use? He
used extremely characteristic, interesting logic, but unfortunately we have to
stop here because of time. I just wish to say one thing before I end today's
lecture because it is really a Pauli-like story.

It concerns whether Pauli really never thought in terms of models. That is
not true. Long before Sommerfeld and Lande, Pauli also seems to have used
models. In the paper submitted in October 1923, after warning of Lande's
overconfidence in models, he adds another footnote. "The Ersatzmodell was
first published by Sommerfeld and Lande in 1923, and they use it to discuss
many things. However, I knew from long before [schon seit llingerer Zeit]
what would come out from the application of the Ersatzmodell to the behavior
of atoms." Namely, Pauli already knew everything about the advantages and
disadvantages of the Ersatzmodell. Such was Pauli's intellect. He figures out
everything before other people do and studies it completely, but he never
publishes it until he's absolutely convinced. He had this perfectionist tendency.
Therefore, I think he really had known "from long before" the contradiction in
explaining the multiplicity by the atomic core, and that convinced him that he
should establish the rules only from experimental fact. In this process it seems
that a new idea crystallized in his thinking around 1924, that the origin of the
multiplicity is not the core but the electron itself. You might recall that when
he warned Lande, he said, "The very fact that the two electrons in He have to
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play entirely different roles-one the core electron and the other the radiant
electron-is the failure of the model." It seems he had already sensed that the
origin of the multiplicity is in each electron itself. Pauli published this idea,
and from it the idea of the spinning electron was generated by Uhlenbeck and
Goudsmit in 1925. For now we finish, leaving the entrance of our hero spin to
the next lecture.



LECTURE TWO

Electron Spin and the Thomas Factor

The Conjecture of the Self-rotating Electron
and Pauli's Sanction of It

In the previous lecture I said that the multiplicity of a spectral term is a type of
internal Zeeman effect and described how the Ersatzmodell evolved from this
idea to explain a variety of data on multiplicity. But as Pauli pointed out early
on, this model in fact contains a serious problem. Furthermore, around 1924
Lande himself, who had great hope for his Ersatzmodell, found a fact which
shook the foundation of his model. That is to say, from the hypothesis that the
intervals between levels within a multiplet term are determined by a magnetic
interaction of the two angular momenta (of the core and the radiant electron),
Lande found only conclusions that contradicted experiments. Today I start this
lecture from Lande's sad discovery.

Here we limit ourselves to the alkali atoms and similar ions. Lande pored over
mountains of experimental data and found an empirical formula for the value
of intervals within doublet levels. In doing this, Lande took Sommerfeld's
fine structure formula, proposed in 1916, as a point of departure. Why did
Lande want to use such a timeworn formula? He had a good reason, but I
hesitate to present it because it takes too long. I just mention here the essence
of Sommerfeld's theory.

Around 1916 Sommerfeld found that if he introduced relativity into the
Bohr theory of the hydrogen atom, the relativistic variation of the mass of
the electron is different for the S orbit, the P orbit, the D orbit, etc. Whereas
in the nonrelativistic theory the terms belonging to the same n have the same
energy, we find that once we consider relativity, the levels S, P, D, etc. will be
separated. Therefore, a single term of the H atom which was thought to depend
only on n becomes an assembly of several levels with fine intervals. This was
Sommerfeld's idea. According to his calculation, the level splitting is

24
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(
eh )2 I Z4

~Wrel=+2 -- - .
2mc a~ n3k(k - I)
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(2-1)

Since this splitting occurs in He+, Li++, and Be+++, in addition to H, I put Z into
(2-1). This equation gives the spacing between levels with subordinate quantum
numbers k and k - I, and n of course is the principal quantum number. The
Bohr radius aH is given by

h2

aH = --2'
me

(2-2)

Formula (2-1) is called the fine structure formula, and indeed in H, He+, Li++,
and Be+++ the splitting of the terms matches very well with this form.

You see from this that the theory allows for the splitting of levels with the
same n and different k. This is entirely different from the splitting of levels
within a doublet term of an alkali atom. (The two levels in an alkali doublet
term have the same nand k, necessitating the introduction of a new quantum
number j to discriminate the two.)

Lande found that in spite of this difference, the interval of two levels in an
alkali doublet term can be expressed reasonably well by a formula that mimics
(2-1). Namely, for a given subordinate quantum number k, the splitting of levels
within a term can be reproduced very well from the formula

(
eh )2 I (Z - s)4

~Walkali = +2 -2m-c a~ -n3=-k-(-k---I)' (2-3)

The reason we have Z -s instead ofZ is that in a real alkali atom the electric field
acting on the radiant electron is not eZ/r but e(Z - s)/r, since the nucleus is
shielded by the internal electrons. From the experimental data, Lande calculated
the value of s using (2-3) and found all reasonable values. For example, from
the experimental values of the spacing of n = 2, k = 2 doublet terms, we get
s values for Li, Be+, B++, and C+++ and for Na, Mg+, AI++, and Si+++ as shown
in table 2.1. As you see from the table, for the Li family s ~ 2, and for the
Na family s ~ 9, but this is quite understandable because for the Li family

Table 2.1

Li Be+ Na Mg+ AI++ Si+++

t!>.W/h 034
s 2.0

6.9
1.9

309 685
19 2.2

t!>.W/h
s

17.2 91.5 238 460
9.0 89 9 I 94
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the number of internal electrons is 2, and for the Na family it is 10. He further
examined the doublet terms of n = 3,4, and 5 and found that in alI cases (2-3)
explains the situation fairly well. For this reason we may say that (2-3) is a
good empirical formula.

Can you then derive (2-3) from the Ersatzmodell? In Lande's model the
magnetic moment I.l R related to R and the magnetic moment I.l K related to K
have a magnetic energy

Wmag = constant (R" K),

and therefore the interval is given by a constant x (J - 1/2) [(1-24), (1-26), and
(1-27)]. In the last lecture we did not even hint at the meaning of this constant.
Now we would like to discuss it.

As I told you last time, if the core has a magnetic moment, there is an internal
magnetic field with axial symmetry in the atom. Then the radiant electron in
the magnetic field exhibits a type of internal Zeeman effect, which accounts
for the appearance of multiplet terms. If we folIow this reasoning and try to
calculate the constant in the formula for Wmag or !1 Wmag, we need a complicated
calculation, so it is wiser to reason as folIows. Instead of the magnetic field due
to the core acting on the radiant electron, we consider the magnetic field of the
radiant electron acting on the core. Let us take the center of the atom as the
origin and express the position of the electron by r and its velocity by v. Then
according to Biot-Savart's law, a magnetic field of

(2-4)

is generated at the ongin. Therefore, if we take the electronic orbital angular
momentum as K according to Lande's convention, then iI can be written as

iI = _ eh ~K.
mer3

(2-4')

Therefore, if the magnetic moment I.l R of the core is concentrated at the origin,
then the magnetic interaction energy between iI and I.l R can be written as in
the normal Zeeman effect as

eh .p.
Emag = --(u "I.lR). (2-5)

2me

[See (1-29).] We now use iI in (2-4') and I.lR = -gaR. [See (1-22).] We
immediately obtain
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(
eh )2 I

Emag = -2g0 2mc r3(K . R).
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(2-6)

Here 1/r3 varies with time, and therefore we cannot immediately take this as
Wmag of (1-24). If we take the time average of l/r3 as (\ /r3 ), however, then
Wmag can be approximated as

Wmag = -2go (2:C) 2 (,13 ) (K· R).

and therefore we obtain

11 Wma = -2g0 (~)2(~) (J _~) .
g 2mc r3 2

(2-6')

(2-6")

So we now know the meaning of the constant, but in order to calculate the inter
val using (2-6"), we need to calculate (1/ r 3 ). This average can be calculated ex
actly when an electron moves in a Coulomb field. If we set the potential equal to

Ze
V(r) = --,

r

then according to Bohr's theory,

(2-7)

(2-8)

Here, n is the principal quantum number, k is the subordinate quantum number
(previously the orbital angular momentum), and aH is the Bohr radius (2-2).
If we are to use Lande's Ersatzmodell instead of Bohr's theory, then since the
orbital angular momentum is K, it is more consistent to use instead of (2-8)

(2-8')

Now we limit ourselves to the case of an alkali doublet. In this case we can
replace J - 1/2 in (2-6") with K. Therefore, we obtain

(
eh )2 I Z3

I1Wmag = -2g0 -- 332·
2mc aH n K

(2-6k
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Furthennore, in the calculation of the g-factor which I discussed in the previous
lecture, we had to replace J2 in (1-31') with J2 - 1/4 [(I-3I)exp]. Therefore

it might be better to use K 2 - 1/4 instead of K 2. Then K 2 - 1/4 = (K +
I /2)(K - 1/2), and since Lande's K is related to k by K = k - 1/2, we should
use K 2 - 1/4 = k(k - I). Doing this, we finally get the fonnula

(
eh )2 I Z3

~W' - -2g0 -- - ----=----
mag - 2mc a~ n3k(k - I)'

(2-6'k

Now this fonnula is derived on the assumption that the electron is moving in
a Coulomb field. Therefore, in order to generalize this fonnula to all atoms, we
should correct for the screening of the core by changing Z to Z - s. We thus
obtain the conclusion

, ( eh )2 I (Z - s)3
~W - -2g0 - -----=----

mag - 2mc a~ n3k(k - I)'
(2-6"k

Thus we find from Lande's idea that the interval of the levels is given by
(2-6"k. Comparing this result with the empirical fonnula (2-3), we see that
they resemble one another, but there are still major differences:

(i) (Z - d in (2-3) is (Z - S)3 in (2-6"k:

(ii) the + in (2-3) is a - in (2-6"k: and
(iii) the factor of 2 in (2-3) is 2go, i.e., 4, in (2-6"k.

Of these three differences, the first is fatal, and if you detennine s from
experimental results using (2-6"), you get entirely different values from those
listed in table 2.1. Thus Lande was forced to admit the failure of his idea that
multiplet tenns are caused by magnetic interaction. I might add that Lande
seems to have missed discrepancies (ii) and (iii). He always focuses on the
"interval" without worrying much about the sign. Also, he dropped gO = 2 by
mistake in the middle of the calculation.

Actually, around 1922, before Lande calculated (2-6"k using the Ersatzmod
ell, Heisenberg had calculated the interval of Li doublet levels in his own way.
His model resembles Lande's model, and he reported that his calculated results
agreed well with experimental values. A man by the name ofO. Roschdestwen
ski had also done a similar calculation, but the reason both he and Heisenberg
found a value that agrees with experiment is that the value of Z was so small.

After these endeavors Lande wrote his last paper on this subject in April 1924
and concluded with the following sentence: "An explanation of the X-ray- and
optical doublet-level intervals using magnetic forces is impossible once and
for all, in spite of the success of Roschdestwenski and Heisenberg on Li."
He sounds so nonchalant. After struggling so much, Lande may have reached
nirvana and had no other recourse than just to accept fact as fact.
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In the meantime, what was Pauli up to? After writing the paper submitted in
October 1923 in which he warned Lande as I told you earlier, he did not write
any papers for one year. Probably during that time he was inching toward the
right solution to these very important problems related to the core, and only in
December 1924 did he finally finish another paper. In this paper he unveiled his
criticism of the prevailing assumption that the atomic core is in the K shell, and
he took the plunge, insisting for the first time that the multiplet is due not to an
interaction between the core and the radiant electron but to a characteristic of
the electron itself.

While the Ersatzmodell was still popular around 1923, many people believed
that the core is in the K shell. When I discussed the core last time, I included in
the core all the electrons other than the outermost radiant electron. However,
people thought that of these electrons, only those in the K shell have angular
momentum R and gO = 2. All the other electrons in the other closed shells,
like the L shell, the M shell, etc., were not thought to contribute to the angular
momentum or magnetic moment. Pauli began by criticizing this idea.

Pauli argued that if indeed only the K shell electrons form the core, then
those electrons will move quickly for large Z values and thus are expected
to be greatly affected by relativity, resulting in large relativistic corrections to
the ratio Imagnetic momentl/langular momentum I . He quoted Sommerfeld's
paper, calculated this correction, and found that for atoms with large Z the value
of gO should show an experimentally observable deviation from 2. Nevertheless,
in reality go = 2 regardless of the Z value. Therefore, the idea that the core is
in the K shell is suspect. This is Pauli's criticism. Pauli further insisted that it
was unnatural to assume that only the K shell had an angular momentum and
a magnetic moment and that no other closed shells did. He insisted rather that
the K shell, like any other closed shell, could have neither angular momentum
nor a magnetic moment.

In addition to these reasons, Pauli also counted as detrimental Lande's
unnatural description of the ground state of He (I have already mentioned that
Pauli warned Lande) and the failure to explain the level intervals within a
multiplet as a magnetic interaction between the core and the radiant electron (I
talked about this earlier), and he concluded as follows: I

The closed electron configurations shall not contribute to the magnetic

moment and the angular momentum of the atom. Especially in the case of

the alkalis, the value ofthe angular momentum of the atom and its change

in energy in an external magnetic field are considered to be mainly due to

the radiant electron, which is also thought to be the origin of the magneto

mechanic anomaly. From this point of view the doublet structure of the

I. Tomonaga made a loose German-to-Japanese translation of this passage We have substituted
for it a direct German-to-English translation.
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alkali spectra, as well as the breakdown of the Larrnor theorem, is caused

by a strange two-valuedness of the quantum-theoretical properties of the

radiant electron which cannot be descnbed classically.

Here, Pauli for the first time declared that of the four quantum numbers n, k,
j, and m,j and therefore m do not arise from an interaction between the radiant
electron and the core, but all belong to the electron itself. However, even here he
tried to avoid the image of a model behind these quantum numbers and simply
said "classically indescribable two-valuedness."

To justify this assertion, Pauli tried to use it to interpret a variety of things.
One of them is that the "peculianty" plaguing the idea of the core is completely
eliminated using his idea. As I have already said many times, if you adopt
the core concept, some property of the core must suddenly change when an
electron is added to the core. This absurdity does not appear in Pauli's new way
of thinking. Furthennore, in his new idea all the electrons have "classically
indescribable two-valuedness," and therefore there is no difference between
the core electrons and the other electrons.

Let me explain the "peculiarity," sticking as much as possible to Pauli's
words. Let us consider an alkali atom. If we observe the Zeeman effect of this
atom in a weak magnetic field and count the number of sublevels, one level
of the doublet tenn splits into 2(k - I) sublevels, and the other splits into 2k
sublevels except for the S term. Therefore, if we add the two levels, the total
number of sublevels will be 2(2k - I). Since the S tenn is singlet, it constitutes
an exception, but since it splits into two levels in the Zeeman effect, the number
2(2k - I) is also valid here. For this reason, for a given nand k of an alkali
atom, the number of states belonging to n, k is N2(k),

N2(k) = 2(2k - I) (2-9h

(the subscript 2 means doublet). We can further derive this number for the
Paschen-Back effect in a strong magnetic field or for an intennediate magnetic
field. For the special case of k = I, the S tenn,

(2-9'h

Next let us consider alkaline earth atoms. In this case, there arise singlet and
triplet tenns, and from observations of the Zeeman and Paschen-Back effects,
we obtain

Nl(k) = 1(2k - I),

N3(k) = 3(2k - I).

(2-10)(

(2-lOh
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The subscripts I and 3 on N denote singlet and triplet terms, respectively.
Therefore, if we do not discriminate between singlet and triplet and give only
nand k. the number of states is

NI (k) + N3(k) = 4(2k - I). (2-10)1+3

The result and conclusions presented so far were obtained simply by sorting
out experimental facts, and we have not used any model. Now let us consider
what will emerge if we interpret these conclusions using the Ersatzmodell.

As I told you last time, the explanation of the Paschen-Back effect using
the Ersatzmodell was quite straightforward. In this case, because of the strong
magnetic field. the magnetic component of the core angular momentum rand
the orbital angular momentum k are individually space-quantized. As a result,
in alkali doublets. the magnetic component mr of r takes two values, and the
magnetic component mk ofk takes 2k-1 values (since weare now using Pauli's
convention. -r + I ::s mr ::s r - I and -k + I ::s mk ::s k - I). Therefore for
a given k. the number of states is 2(2k - I). From this consideration we might
say that the first factor 2 of (2-9h is the number of states of the core and the
second factor is the number of states of the radiant electron.

The same thing can be said about the alkaline earths. Namely. the first factors
I of (2-10) I and 3 of (2-10h represent the number of core states for the singlet
term and the triplet term, respectively. And for both multiplet terms the number
of states of the radiant electron is the same as in the alkali atom, 2k - I.

Now the "peculiarity" appears. For example, let us consider Mg+. As I said
already many times. Mg+ must have a term similar to that found in Na, and
therefore its ground state is a doublet according to (2-9'h- Therefore. if a radiant
electron with quantum number k is added to the ion to form Mg atom. since the
radiant electron always has 2k - I states, the total number of states has to be
2(2k - I). However. this is not the case, and the actual number of states of Mg
is I (2k - I) or 3(2k - I). For this reason. the number of states. 2. of Mg+ has to
change abruptly from 2 to I or 3 at the moment when the electron joins it. This
is indeed "peculiar." There is no way to explain this with classical mechanics
and the correspondence principle. Bohr therefore said that this occurs through
"nonmechanical constraint" (nichtmechanischer Zwang).2

Pauli insists here that if people adopt his new idea that the electron itself has
two-valuedness, then there is no need for such an unnecessary complication as
nonmechanical constraint. Specifically, he argues that this "peculiar" situation
results from the idea that the factors 2 and 2k - I come from the number of
states of the core and the number of states of the radiant electron, respectively.

2 Various historians of physics have translated Zwang a~ "coercion:' "constraint:' and "force."
We have adopted "constraint," which is used in the English translation of this paper in Niels Bohr
Collected Works
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But if you consider 2(2k - I) as the number of states of one electron, then this
awkwardness does not occur. We simply say that when an electron attaches to
Mg+, the number of states of Mg+ is 2 and the number of states of the attached
electron is 2(2k - I). and therefore the number of states for a given k is

2· 2(2k - I). (2-10)

Thus we obtain (2-10) 1+3 without introducing any peculiar idea. Why then
must the number of states of an electron be 2(2k - I)? Pauli calls the first factor
2 a "classically indescribable two-valuedness" and does not want to go further
into the problem.

According to Pauli, this new concept is of course still incomplete, and you
cannot explain why the factor 4 in (2-10) I+3 becomes I and 3-in other words,
why there are two sorts of term series, singlet and tnplet. how the difference
of singlet and triplet arises. and why the level interval of singlet and triplet
results. However, if we adopt this idea. we can explain the remarkable fact,
well known experimentally, that each orbit in an atom has a certain capacity,
and the observation that an orbit is closed when its capacity is filled can be
explained by a very clear rule: Once we specify the values of the quantum
numbers n, k. j, and m, then not more than one electron with those quantum
numbers can exist within an atom. This rule can be interpreted as saying that
once an electron enters into a state specified by n. k. j, and m. that electron
prevents the other electrons from entering the same state. and in that sense it
has come to be called Pauli's exclusion principLe. From this rule. Pauli showed
that it is possible to derive the result that the K shell closes with 2 electrons,
the L shell closes with 8 electrons. and the M shell closes with 18 electrons,
giving strong support to his new theory. The aforementioned rule is possible
only when the n. k.j, and m are related to one electron.

Around that time it was often observed that some terms which were expected
to be present were missing. For example, look at figure 1.1; the singlet terms
of Mg start from n = 3, but the triplet terms start from n = 4, with n = 3
missing. Pauli showed this phenomenon can also be explained by the exclusion
principle. Furthermore, if you consider larger atoms or atoms in which more
than one electron is excited, then many levels should be missing because of
the exclusion principle. In order to judge the validity of Pauli's idea. we should
consider all cases and confirm that there is no discrepancy. Therefore, Pauli
traveled to Lande's lab and tried to find among the many data Lande had
accumulated any case that broke this rule. In Lande's laboratory he met a young
man who wanted to propose that the electron is self-rotating as an extension of
Pauli's idea.

That young person was R. de L. Kronig. who conceived ofthe self-rotating elec
tron half a year earlier than Uhlenbeck and Goudsmit. Kronig was barely twenty
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years old at that time. bul he was interested in multiplicity and the Zeeman
effect and came from the United States to Lan~'s lab in January 1925. Lande
showed him a letter from Pauli in which ''the classically indescribable two
valuedness" was mentioned. After reading this. Kronig immediately thought
of a self-rotating electron, i.e.• an electron rotating about its own axis with an
angular momentum of self-rotation of 1/2 and a g-factor of 80 = 2_ From this
assumption he could explain the appearance of the alkali doublets, the Zeeman
effect. and the Paschen-Back effect as well as he could from the ErsatunodeJJ.
Furthermore. he anticipated that the interaction between the magnetic moment
of the self-rotation and the orbital motion could be derived through relativity,
and using that, he wa." able to calculate the interval within doublet tenus.

How do we use relativity here? Let me explain. The electrons in an atom
are in an electric field and are therefore influenced by that electric field. but the
self-rotating magnetic moment of the electron will not be directly affected by

Figure 2.1 From left" Yoshio Nidlina (1890--1951). David M. Dennison (l900--t976), Werner
Kuhn (1899-1963). Ralph de laef Kronig (1904-1995). Bidu Bhusan (B.B.) Ray in Copenhagen.
1925
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the electric field. However, if an electron is moving, then a magnetic field which
did not exist in the laboratory frame appears in the rest frame of the electron
through a Lorentz transformation. According to Einstein, this field is

(2-11 )

In this event if we write the self-rotating magnetic moment as Ile' then its
interaction with Il is

eh .p"
Erel = - --(u· Ile)

2mc
eh .p"

=gO-(u·s).
2mc

(2-12)

[Remember (2-5) of the Ersatzmodell.] This is the interaction energy between
the magnetic moment due to self-rotation and the orbital motion. However,
since (2-12) is the energy of the electron in the rest system, the energy in the
laboratory system has to be obtained by a Lorentz transformation of (2-12). For
this purpose, we simply multiply by I/JI - v2/c2 .

However, if the electric field E is a Coulomb field and if v2Ic2 « I, then we
can do this calculation by a more elementary method. This is because we can
obtain the magnetic field Il for the electron rest system by using Biot-Savart's
law. Observers sitting on top of the electron and moving with it will think the
electron is at rest and instead the nucleus is revolving around the electron. They
will say the nuclear velocity is -v, the radius is -r, and its charge is +Ze.
Therefore, according to Biot-Savart's law, the magnetic field at the position of
the electron is given by

(2-11 ')

[Let me remind you that the magnetic field at the core was given by (2-4) in the
core model. There we had a rotating electron with charge -e, but here we have
a nucleus with charge +Ze.] Now if we substitute into (2-11) the Coulomb field

Ze
E=-r

r 3

and approximate J I - v2I c2 ~ I, then we obtain Il, which was given in (2
II '). If we compare (2-11 ') thus obtained with (2-4), which we used for the
core model, we have Ze instead of e and + instead of -. For this reason if we
calculate using Kronig's idea of a self-rotating electron, then the level interval is
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Z times the value given by (2-6'k, and the - should be changed to +. Namely,
we have

(
e'h )2 I Z4

~Wrel = +2g0 2mc a~ n3k(k - 1) . (2-13)

If the electric field is not a Coulomb field, we can correct for screening and
obtain

(
e'h )2 I (Z - s)4

~Wrel = +2g0 -- 3 3 .
2mc a

H
n k(k - I)

(2-13')

If we compare this formula with Lande's empirical formula (2-3), they agree
much better than in the case of the core model. We summarized the differences
between experiment and the core model as points (i), (ii), and (iii), but the
problems of (i) and (ii) are already resolved. However, the third discrepancy
remains. As I told you before, the factor 4 results because gO = 2 was used,
but we cannot put gO = I because neither the anomalous Zeeman effect nor
the Paschen-Back effect would result. For this reason, Kronig's anticipation
that the correct level interval will come out from the relativistic energy (2-12)
was not realized. However, have we not done quite well to have eliminated
discrepancies (i) and (ii)?

Kronig knew long before carrying out the detailed calculation that if the
magnetic field in (2-11) is used, the level interval is proportional to Z4 and not
Z3, and therefore the fine structure of H, He+, Li++, Be+++ is better explained by
the self-rotation of the electron than by Sommerfeld's model. In fact, only if the
factor on the right-hand side of (2-13) is 2 does Kronig's formula have precisely
the same form as Sommerfeld's fine structure formula (2-1). Therefore, the fine
structure can be explained by his new interpretation. Nevertheless, this prospect
was not realized because of the factor 4 in (2-13).

Kronig talked to Lande about his result. Lande said that since Pauli is coming
here soon, why not ask his opinion? Pauli and Kronig met, and when Pauli heard
Kronig's idea, he showed no interest in it and greatly disappointed Kronig by
his coolness. Kronig then went to Copenhagen and aired his idea there, but still
he did not gain much sympathy. Also, he himself was not confident because
of the difference from experiment by a factor of two in the level intervals, and
furthermore, the idea of a self-rotating electron presents a variety of difficulties
when examined within the framework ofclassical electron theory. (For example,
if the size of the electron is e2/ mc2 as H. A. Lorentz has considered, then so
fast a rotation is needed to have a self-rotating angular momentum of 1/2 that
the electron's surface reaches a speed ten times higher than that of light.) For
all of these reasons, Kronig decided not to publish his idea.
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Meanwhile in the fall of 1925, Uhlenbeck and Goudsmit published precisely the
same idea in Naturwissenschaften. Actually, after submitting their paper, they
asked the opinion of Lorentz, who said it was almost impossible in classical
electron theory. So an episode followed in which they tried to withdraw their
paper in a huny, but they were too lale. For better or for worse, their paper was
published in Ihe journal.

When Ihey published Ihis paper. lhey had not calculaled the level intervals
of doublet stales. However, during lhe mere half year after Kronig had aired his
idea in Copenhagen, lhe atmosphere there had drastically changed. Bohr began
to show much inlerest in the idea of the daring duo, Einstein advised them 10
use (2-11), which Kronig already used to calculate the level inlerval, and Bohr
even appended a short recommendation 10 their paper. However, Pauli said in his
Nobel lecture that he was still definitely opposed to Uhlenbeck and Goudsmil's
idea. Now as for Kronig, he sent a letter to Nature, where their second paper
was published, criticizing their paper and enumerating many difficulties of a
self-rotating eleclron. AI the end of Ihe paper, he wrote, '''The new hypoth~is,

Figure 2.2 Oscar Klein ( 1894-1977), George E. Uhlenbeck ( 1900-1988). and Samuel A. Goudsmit
(1902-1978), 1926. IPhotogmph by H. Knauss Courtcsy of AlP Emilio Seg~ Visual Archives)
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therefore, appears rather to effect the removal of the family ghost from the
basement to the sub-basement instead of expelling it definitely from the house."
Hard-nosed, is he not?

Uhlenbeck and Goudsmit, however, were well aware of a variety of problems
with the self-rotating electron. (It was for exactly this reason that they wanted
to withdraw their paper from Naturwissenschaften.) In the second paper they
pointed out that when they calculated the level interval for the doublet term,
there was a factor of 2 discrepancy with experiment.

While the proposition of the self-rotating electron was thus in turmoil, the
famous work of L. H. Thomas appeared. In this work he showed that the dis
crepancy between the theory and experiment of the level interval of the doublet
state is caused by an incorrect definition of the electron rest system. When this
was clarified, even Pauli decided not to categorically oppose the idea of the
self-rotating electron, and in spite of its remaining problem, he approved this
idea. (As I told you earlier, Pauli's perfectionism was phenomenal. He not only
wanted to be perfect himself, but was well known for applying this standard to
other people, sometimes arguing harshly against other people's work. For this
reason when people asked his opinion of their work and he gave his assent, they
called it Pauli's sanction.)

Thomas' calculation is awfully complicated, really too much to handle here. In
essence it says that "the coordinate system in which the electron is at rest and
the nucleus is rotating" should not be treated so simply. If the electron is moving
with constant velocity, then such a coordinate system can easily be obtained
from the laboratory coordinate system by a Lorentz transformation. However,
if the electron has acceleration, there is a complication. We can indeed consider
the coordinate system in which the electron is motionless. Specifically, this is a
coordinate system which has the electron at the origin and is moving together
with the electron. However, we cannot uniquely determine the coordinate
system just by declaring that its origin is moving with the electron. How should
we orient the x, y, and z axes? In addition to the condition that the origin is
moving with the electron, we must add the condition that the x, y, and z axes are
always moving in translation, i.e., not rotating. This "parallel motion" is obvious
when the electron is maintaining a constant velocity, but when the electron has
acceleration, it is not that obvious. This is the point that Thomas realized.

Therefore Thomas first discussed what is meant by the parallel translation
of the coordinate axes. He concluded that the parallel translation of the axes
means that the axes at each instant are parallel to the axes at an infinitesimally
small time before that instant. The coordinate system whose origin is moving
with the electron, in this sense translating parallel to itself, may be called the
proper coordinate system of the electron; Thomas derived that this coordinate
system, seen from the laboratory system, is not translating parallel to itself but
is accompanied by rotation if the electron has acceleration. After a laborious
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calculation he found that the axes of the proper coordinate system are rotating
with respect to the laboratory-fixed system with an angular velocity O.

I
O=-zaxv.

2e
(2-14)

Here a is the acceleration of the electron. (We have used the approximation
I - vZ/ez ~ I.) Thomas pointed out that in the calculations by Kronig and
by Uhlenbeck and Goudsmit, this rotation of the proper coordinate system is
not taken into account, and therefore their answer is correct if and only if the
acceleration of the electron is O. I am going to talk about Thomas' theory in
detail later (lecture II), but let me outline it here.

First of all, in the rest system of the electron we have a magnetic field Hgiven
by (2-11). In this respect Kronig and Uhlenbeck and Goudsmit were correct (and
so of course was Einstein). Therefore, the energy of the self-rotating magnetic
moment l1e of the electron in this magnetic field is given by (2-12), and a sort
of internal Zeeman effect occurs. Now Thomas' theory is purely c1a<;sical and,
like the idea of J. Larmor, explains the Zeeman effect based on the precession
of l1e. Let us first consider the precession of l1e in the magnetic field Husing
the classical theory of tops. The angular velocity of precession is then

Off = gO_e_ H.
2me

(2-15)

Here I have to digress a little bit because you may worry about the relation
between this formula and (2-12). First, the fundamental frequency vff of the
precession is given by the time average of (2-15) divided by 2Jr, namely

Vff = gO_e_(H}.
4Jrme

Next, using the correspondence principle, Bohr's relation hv = IWI - Wzl,
means that

eh .ji..
hVff = gO-(u}

2me
(2-15')

should agree with the level interval of the doublet term calculated from (2-12).
Now in (2-12), l1e = -gOs, and the component of s along the magnetic field is
either +I /2 or -1/2. Therefore, the level interval obtained from (2-12) is

eh .ji..
/),. Wrel = gO-2-(u),

me

which indeed agrees with that given in (2-15').

(2-15")
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Now you must have a clear picture. Speaking in terms of classical theory,
what Kronig and Uhlenbeck and Goudsmit had done was to think that the
angular velocity of (2-15) is itself the angular velocity of the precession in the
laboratory system. However, Thomas argued as follows. This angular velocity
of precession is indeed the angular velocity as seen from the proper coordinate
system of the electron, but if you view the motion from the laboratory system,
the proper coordinate system is itself rotating with an angular velocity given by
(2-14). Therefore if we express the precession of Ile seen from the laboratory
coordinate system as fi1ab, then

filab = fiff +fi

e.ji.. I
=gO--u+ -a x v.

2mc 2c2

Now the acceleration of the electron a is related to the electric field by

e
a=--E.

m

(2-16)

(2-17)

Therefore, we substitute this into the second term on the right-hand side of
(2-16) and, using (2-11), obtain

filab = C!?O - 1)_e_H.
2mc

(2-18)

[We put I - v2/ c2 :=:::: I in (2-11 ).] If we substitute gO = 2, then we obtain one
half of the result of (2-15), which we derived without considering fi. Therefore,
again using the correspondence principle, we obtain, instead of the level-spacing
of (2-15") which was directly obtained from (2-12),

eh .ji..
/)"Wrel = (gO - I)-(u).

2mc
(2-19)

This means that as seen from the laboratory system, the interaction energy
between Ile and H is given not by (2-12) but by

eh .ji..
Erel =(go-I)-(u'8),

2mc

and if E is a Coulomb field, then instead of (2-13) we derive

(2-19')

(2-20)
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and for a screened nucleus, instead of (2-13') we put

(
e'h )2 I (2 - S)4

~Wrel = +2(gO - I) 2me a~ n3k(k _ I)' (2-20')

Ifwe substitute gO = 2, we indeed get a level spacing which is half that obtained
from (2-13) or (2-13'). Therefore, out of the three problems (i), (ii), and (iii),
the only remaining discrepancy, (iii), has also been resolved.

Since we obtain a result multiplying (2-12) by 1/2 if we use go = 2 in (2-19'),
we call this factor of 1/2 the Thomas factor. However, we might note that the
factor 1/2 results only when go = 2. If gO =1= 2, we cannot say that (2-19') is half
of (2-12). Therefore, I do not like to say, "The Thomas factor is 1/2," because
then we may be led to the misunderstanding that we simply have to take half of
the answer obtained without Thomas' insight in order to incorporate his result.

Finally, I wish to add the following. So far we have considered only cases
where we have not applied an external magnetic field. What happens if an
external magnetic field H is present? The answer is very simple. Instead of
(2-15) we just use

0H+fI = gO_e_(H + fl).
2me

(2_15'01)

We then find for the angular velocity of precession viewed from the laboratory
system instead of (2-18)

e e .A,
Olab = go-H+ (gO -1)-u.

2mc 2me
(2-18')

And for the interaction energy as seen from the laboratory system we obtain
instead of (2-19')

e'h e'h .A,
EH+rel = gO-2-(H· s) + (gO - 1)-2-(u· s).

me me
(2_19")

Put into words, (2-19") states that an electron acts as if it has a magnetic moment
go(e'h/2me) for an external magnetic field but a moment of (gO - I )(e'h/2me)
for the internal magnetic field. Therefore-finally-all the contradictions re
lated to electron spin have been removed.

Thomas published his conclusion as a letter in Nature in February 1926 and
submitted a full paper to Philosophical Magazine in January 1927. This work
of Thomas' had a tremendous impact in Europe. After all, the discrepancies
between theory and experiment on the level spacing in doublet terms were
thereby completely resolved. Also, the fine structures of H, He+, Li++, Be+++
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were shown to be special cases of the alkali doublet terms contrary to Som
merfeld's interpretation. Superficially, whereas in Sommerfeld's theory only S,
P, D, ... are separate for the same n, if we use the alkali model, each of them
further splits into two, and therefore it appears as though they have twice as
many levels for H, He+, Li++, Be+++ as provided by Sommerfeld's model. This
is true. Nevertheless, it was not observed that way, experimentally.

Let me explain the reason for this, taking as an example n = 2 for simplicity.
The n = 2 term of H has an S term, k = I, and a P term, k =2, and the
P term in the alkali model is a doublet and therefore is further split into two
levels, producing three levels altogether. However, if E is a Coulomb field, the
lower component of the doublet level overlaps with the S term.3 Therefore,
there seem to be only two levels. However, the fact that they are overlapping
can be confirmed from the intensity of the spectral line. Furthermore, since S
and P are overlapping, we observe transitions which would be forbidden by
the selection rule if the level were purely S. (It was Goudsmit who first pointed
this out.)

For these reasons, H can be discussed side by side with Li and Na, and He with
Ne and Ar. (I said before that the K shell was considered to be different from
the L shell and the M shell as layers of the core, but behind this line of thought
was the idea that H and He are different beasts than Li and Na, and Ne and
Ar, respectively.) Furthermore, this is 1927. Heisenberg had already developed
matrix mechanics, and SchrOdinger had written extensively about the exploits of
the equation bearing his name. According to these new theories, a half-integral
angular momentum can exist, the magnitude of orbital angular momentum in
the atom is not k but £ = k - I, and the square of the angular momentum
is t 2 = £(£ + I) rather than £2. We can consider a revised Ersatzmodell
incorporating these new facts along with the idea that multiplicity is caused
by a self-rotating electron instead of the core, and we get a model which is
closest to Sommerfeld's except that we replace in (I-26)s and (I-31)s

j2 ~ jU + I),

j; ~ jaUa + I),

j; ~ joUo + I).

Indeed if we use (1-10) and express it with Lande's version of the quantum
numbers, the peculiar 1/4 in Lande's g-factor automatically appears. When we
add to this model Pauli's exclusion principle, we can develop a very general
theory of atomic spectra and the periodic table. Thus all the fog of 1923-24

3. These levels are split by the Lamb shift due to the quantum electrodynamical effect. which
Tomonaga. Schwinger. and Feynman independently explained Tomonaga slnclly avoids using
QED arguments throughout the book.
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has completely cleared. One unsolved problem is the tremendous contradiction
between a self-rotating electron and classical electron theory. Furthermore,
why the angular momentum of self-rotation is 1/2 , why gO must be 2, and
how Thomas' classical theory can be quantized still remain as problems. Dirac
resolved the last three points from a very unexpected direction as I shall explain
next time.

Thomas used classical relativity and the classical theory of tops, supple
mented by the correspondence principle, to describe the self-rotation of the
electron and was able to derive the correct level intervals. After all this even
Pauli could not help withdrawing his reservation "classically indescribable"
and finally bestowed his sanction upon the postulate of Kronig, Uhlenbeck, and
Goudsmit. All's well that ends well!

The relationship among these three persons stemming from their work on the
self-rotating electron has many more interesting episodes, but I wish to leave it
to another occasion because we do not have time here. I would like to add just
one thing: the fact that people later started to call self-rotation spin. They say it
was Bohr who first used this word. Probably you agree with me that nowadays
we do not think of self-rotation or rotation when we hear the word spin (except
in the case of skating). This is why I tried to avoid saying spin during this talk
and purposely said self-rotation.



LECTURE THREE

Pauli's Spin Theory and the Dirac Theory

Why Nature Was Not Satisfied by a
Simple Point Charge

As I told you last time, an enonnous number of ideas, such as the exclusion
principle, electron spin, and Thomas' theory, emerged during the period 1925
26. It was also a time of upheaval in physics triggered by the discovery of
matrix mechanics by Heisenberg and the development of wave mechanics by
SchrOdinger. Using these new theories, quantum mechanics was completely
rewritten to go beyond the older, incomplete theory. Previously, the correspon
dence principle had been applied to classical calculations to infer the existence
of discrete energy levels and the probability of transitions between them, facts
not at all compatible with classical theory.

At the time of discovery, these two new theories looked entirely different
from each other in their mathematical fonnalism as well as in their physical
interpretation. Nevertheless, SchrOdinger himself soon realized that at least
mathematically they are completely equivalent. (Supposedly Pauli also realized
this equivalence, but SchrOdinger published it earlier.)] Toward the end of
1926 Dirac attempted to unify these two theories using a concept called the
state vector and established his majestic transfonnation theory of quantum
mechanics.

To explain transfonnation theory at length would be too much of a digression,
so I shall not do that. In essence the idea is to incorporate into an abstract linear
space many concepts, such as matrices and their eigenvalues and eigenvectors,
which play central roles in matrix mechanics and linear operators and their
eigenvalues and eigenvectors, which play central roles in wave mechanics. As
you know, a physical quantity is expressed by a matrix in matrix mechanics
and by a linear operator in wave mechanics. In this unified theory, on the

1 Eckart independently showed the equivalence of the two theories: Eckart C 1926 Operator
Calculus and the Solution of the Equations of Dynamics Phys. Rev. 28 711-726

43
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Figure 3.1 Paul A. M. Dime (1902-1984).

Leiden 1928 !PiKJ(og!3ph by Leningrad
Physico-Technical In5l;tule. Courtesy of
AlP Emilio SegR Visual Archivesl

other hand. many physical quanlities are expressed by abstract linear operators
(Dirac's q-numbers). Finding the quanlum-mechanically allowed values of a
physical quantity is reduced to finding the eigenvalues of the linear operator
expressing that physical quantity; in doing this calculation. depending on what
kind oforthogonal coordinate is taken in Ihisabstract linear space. the fonnalism
of matrix mechanics or thai of wave mechanics emerges. In other words. by
transforming orthogonal coordinate systems in the linear space we can derive
wave mechanics from matrix mechanics and vice versa. For this reason this all
inclusive theory is called transformation theory. Funhennore. in this theory.
a state of a mechanical system is expressed by an abstract vector in lhe linear
space; hence this linear space is often called state space and the vector the
state vector.

Much earlier D. Hilbert and laterJ. von Neumann succeeded in incorporating
the mathematics of matrices and vectors and the mathematics of Iinear operators
and functions into thai of an abstract linear space. but the number of coordinate
axes taken by lhem in Ihe linear space was either- finite or at most countably
infinite. Therefore. in their theory we can take only coordinate axes such as
the XI-axis. x2-axis. Xl-axis. etc.• which are indexed by the positive integers.
In contrast, Dirac made il possible to use a nondenumerably infinite number of
coordinate axes by introducing his well-known IS-function. In other words. in
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Dirac's theory we can use an xq-axis in which the subscript q is a parameter with
a continuous range of values. (Actually, mathematicians do not like this type
of idea, but it is convenient for physicists.) Therefore, if the axes are countable,
the components of a state vector are expressed as

n = 1,2,3, ...

but if the axes are continuously infinite, the vector can be expressed as

(3-1)

1{t(q), (3-1 ')

where the function has the variable q as a running variable taking all the values
in the domain (ql, qz). Of course, we can rewrite (3-1) as

1{t(n), n=I,2,3, ... (3-1")

and regard the component of the vector as a function where the running variable
n takes only discrete numbers, or more generally we can consider the case in
which the running variable takes continuous values in a certain domain (ql, qz)
and then takes discrete values elsewhere.

Now according to the transfonnation theory, the state vector changes from
one instant to another by the transfonnation called a unitary transfonnation, but
the state vector has to satisfy a first-order differential equation with respect to
time. Furthennore, according to Dirac, if you take the principal axes of a certain
physical quantity as the coordinate axes in a state space (more specifically,
if you take the principal axes of a linear operator expressing that physical
quantity), then the state vector is given a definite physical meaning. Depending
on whether the physical quantity has discrete or continuous eigenvalues, the
principal axes become discrete or continuous, and accordingly the components
of the state vector become 1{t(n) or 1{t(q). In either case, the square of the
absolute value of a component of the state vector, that is 11{t(n)lz (or 11{t(q)lz),
gives the probability (or probability density) for the physical quantity to take
the nth (or the qth) value. Such is the physical meaning of 1{t(n) or 1{t(q). (For
the continuous spectrum it is convenient to use the eigenvalue of the physical
quantity itself as the subscript q. Then the qth value means the value of q.) In
this sense, when such coordinate axes are used, each component of the state
vector is often called a probability amplitude. The usual wave function is the
probability amplitude in which the physical quantity detennining the coordinate
axes in state space is the position of the electrons. In this case the components
of the state vector can be written as

1{t(x) = 1{t(X, y, z); (3-2)



46 LECTURE 3

then 11fr(x)12 gives the probability density that the electron is in the vicinity
of x. Furthermore, once we know the probability or probability density, we
can calculate the expected value of a variety of physical quantities. Suppose
there is a physical quantity A with discrete eigenvalues written as An for
n = 1,2, 3, ... or with continuous eigenvalues in the domain (ql, q2) written
simply as q, ql < q < q2. Let us use as a coordinate system in the state space
the principal axes of A, X n or X q , and let the component of the state vector
with respect to those coordinates be 1fr(n) or 1fr(q). Then the expectation value
of A, (A), is given by

q2

(A) = LAn l1fr(n)1
2 +f ql1fr(q)1

2
dq.

n q,

(3-3)

With the development of these ideas, the framework of quantum mechanics
was essentially completed by the end of 1926. There remained the problem of
how to incorporate spin and relativity into this grand theoretical framework.

I shall stop here on the general transformation theory so that we can proceed to
the story of spin. Heisenberg, who discovered matrix mechanics, immediately
applied the new mechanics to the spin model with P. Jordan in 1926. They ex
amined multiplet terms and the anomalous Zeeman effect and obtained correct
results on the g-factor, level interval, and fine structure formula. Furthermore,
a year later, Pauli applied Dirac's transformation theory, which I just discussed,
and attempted to incorporate spin into SchrOdinger's representation. Naturally
he reached the same conclusion as Heisenberg and Jordan about the problem
of multiplet terms. Although this work by Pauli has the same conclusion as
Heisenberg's, it has considerable significance in relation to the many-electron
problem and the exclusion principle because he used SchrOdinger's represen
tation; we cannot disregard its pioneering role for Dirac's subsequent electron
theory. Therefore let me talk about Pauli's work for a while.

As you know, the equation discovered by SchrOdinger played a central
role in wave mechanics. The SchrOdinger equation for the mechanical system
composed of one electron is

[HO + ~~] 1fr(x) = 0
I at

if we neglect spin, where

I 2
Ho = -p + V(x),

2m

(3-4)

(3-4')
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p = (Px, PI' pz) = (~aa , ~ aa , ~ aa ) ,
I X I Y I Z

x=(x,y,z),

and 1{t(x) is the aforementioned probability amplitude, (3-2). This 1{t(x) varies
with time satisfying (3-4). In order to include spin, what kind of equation should
we use instead of (3-4)? This was Pauli's problem.

Since spin is the self-rotation of an electron, one might welI at the outset
expect that the degree of freedom of self-rotation can be expressed by using
some suitable angle cpo In classical mechanics, if the angular velocity of self
rotation takes one definite value, then the only free variable is the direction
of the rotation axis. In this case, we can use the azimuthal angle of the self
rotation axis as the canonical coordinate describing the freedom of self-rotation
and consider it as our angle cpo If we do this and let S (the angular momentum
expressed by a capital letter should be considered to be in the ordinary units)
be the angular momentum for self-rotation, then its z-component Sz will be the
canonical momentum conjugate to cpo Therefore, if we take this angle cp as a
coordinate for the spin degree of freedom, then it appears that we should use
a function 1{t(x, cp) in which the angle cp has been incorporated into the wave
function instead of 1{t(x), and just as the momentum p conjugate to x was given
by the second formula of (3-4'), we can use as Sz, which is conjugate to cp,2

11 a
S --

z - i acp' (3_4")

However, this idea introduces one problem.
The difficulty arises from the fact that the magnitude of the spin angular

momentum is (1/2)11. Namely, this means that the quantum-mechanicalIy
alIowed values for Sz should be ±11/2, which means that the eigenvalue of
Sz is ±11/2 and therefore the eigenfunction of Sz must be e±i'/i/2. However, this
function does not come back to its original value if cp is varied from 0 to 21T.
That is to say, it is a two-valued function, and it is illogical to alIow it to be an
eigenfunction.

In order to avoid this problem, Pauli proceeded as folIows. As I explained
before I started talking about spin, in Dirac's transformation theory we can
use as the coordinate axes in state space those with discrete subscript n or
those with continuous subscript q. Therefore using the angle cp is not the only
way to incorporate the spin degree of freedom into the theory. If we write the

2 Tomonaga is confused here. If'/i is the azimuthal angle of the self-rotation axis, then to be
consistent with (3-11), (3-4") cannot be right This argument is an aside in the text, however, and
since it does not affect the text, we leave it here as an example of even a great theoretical physicist
making an elementary slip
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wave function as 1{t(x), that means we take the principal axes of the position
coordinate x of the electron and that of the spin coordinate cp as the coordinate
axes in state space. In order to incorporate the spin degree of freedom, we can
use instead of the axis of the angle cp the axis of the self-rotational angular
momentum Sz. Ifwe do this, we use as the wave function 1{t(x, Sz). Here Sz is a
variable which takes only the two values ±11/2. After all, there is the question
of whether we can actually experimentally measure the angle cp anyhow. On
the contrary, Sz is directly related to experiment, and for this reason it was very
much to Pauli's liking.

From now on we shall use s, measured in units of1l, rather than the angular
momentum S, measured by the usual units. Namely,

S = 1Is, (3-5)

Then our wave function becomes

1{t(x, sz), (3-6)

and this function does not have the specter of two-valuedness. The physical
meaning of (3-6) is that the probability density of an electron at x with its spin
up is

and with its spin down is

(3-7)_

Also, the fact that Sz takes only two values, ± I/2, means that the state space for
the spin degree of freedom is a two-dimensional vector space. If we consider
this way, we may say that 1{t(x, + I/2) and 1{t(x, -1/2) are the components of
the state vector in the state space.

We now know how to incorporate spin into the wave function 1{t(x), but the
next problem is how to do the same for SchrOdinger's equation. Ho in (3-4)
is the Hamiltonian representing the total energy of the system when spin is
neglected. Therefore, in order to incorporate spin into SchrOdinger's equation,
we should add the energy of spin to Ho. To treat the Zeeman effect, we should
add to Ho the Hamiltonian of interaction between the external magnetic field
and the electron.
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First let us consider the Hamiltonian involving the external magnetic field
H and write it HI. As to the form of HI, please remember (1-28) and (1-29).
We can use as HI those expressions which are the interaction energy for the
external field and the atom, but we must follow the new quantum mechanics
and use t instead of K and s instead of R:

eh
HI = - [H· (t + gos)).

2mc

Here t is the orbital angular momentum in units of Dirac's h,

e= ~ (y~ -z~)
x i az ay'

e = ~ (z~ -x~)
y i ax az'

e= ~ (x~ -y~)
Z i ay ax'

(3-8)

(3-9)

and s is the spin angular momentum given by (3-5). Furthermore, for spin we
have to add the interaction Hamiltonian between the internal magnetic field
(2-11 ') and the spin magnetic moment. If I write that as H2, then we can write
from (2_19')

eh -A.
H2 = (gO - 1)-(". s).

2mc

Here, the internal magnetic field (2-11 ') can be written as

and therefore

(
eh )2 I

H2 = 2(go - I)Z - 3(t. s).
2mc r

(3-10)

(3-10')

(3-10")

The next problem is what type of operator to use for the vector s. When we
considered Ho in SchrOdinger's equation (3-4), we used as operators for x, y, z
simply those coordinates multiplying the wave function from the left, namely
x·, y', Z', and for Px, Py, pz we used operators which act on 1{t(x, y, z) by
hal iax, hal iay, hal iaz. For ex, ey • ez in HI we used the angular momentum
operators (3-9). Now the freedom of x, y, z is completely independent of the
freedom of spin, and therefore we may consider the same operators acting upon
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the wave function 1/!(x, y, z, Sz) as far as x, p. and t are concerned.
Now let us consider the spin degree of freedom. As I already told you,

according to the general transformation theory. the independent variable q,
which is used in the wave function 1/!(q). is an eigenvalue of some physical
quantity (for example. the variables x. y, z used in 1/!(x, y. z) are the eigenvalues
of the physical quantity called the position coordinate of the particle), and the
operator which expresses that physical quantity is simply the operator q, which
multiplies the wave function 1/!(q) by q. For the physical quantity p, which is
conjugate to q, we use hal i aq (assuming that the conjugate quantity exists).
Therefore for the wave function 1/!(x, y, z. sz). we can use an operator for the
z-component of the spin angular momentum Sz" Note that the Hamiltonian
operators HI and H2 contain Sx and Sy in addition to the physical quantity Sz.

What operators should these be which are applied to 1/!? There is the following
way of doing it. (This was not the way Pauli adopted.)

We considered the angle cp as a coordinate which describes the spin degree
of freedom. When we used this as one of the arguments in the wave function,
the function became two-valued, and therefore we switched to sz' which is
conjugate to CPo as the running variable of the wave function. Now if we use this
cpo then we can express Sx and Sy by

Sx = j S2 - S; cos cp ~.
Sy = VS- - Sz sm cp, (3-11 )

where cp and hsz are conjugate to each other. Are the operators we are looking for
not those in (3-11) when cp is replaced by aIi asz? We then have the problem
of how to define cos(aliasz ) and sin(aliasz)' It is not impossible to define
these. but since it is too complicated. Pauli did not adopt this method. Instead
he considered as follows.

In matrix mechanics the angular momentum matrices m x , m v, m z satisfy in
general the commutation relations

mxm v - mymx = im z'

mymz - mzm y = imx ,

mzmx - mxm z = im y .

Furthermore. Iml2 = m~ + m; + m~ has the eigenvalue

(3-12)

ImI 2 =m(m+I). m=O.I,2, ...
135

or m = 2' 2' 2'··· (3-13)

Therefore Pauli also requires equations similar to (3-12) for the spin angular
momentum (Sx, Sy, sz).
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SXS) - SySx = isz ,

SySz - szsv = isx ,

SzSx - SxSz = isy ,

and assumes as a special characteristic of spin, instead of (3-13),

2 I(I ) 3lsi =:2 :2 + I = 4'

(3-12')

(3-13')

Therefore he introduced the 2 x 2 matrices which are called "Pauli's matrices"

Ux = (~ ~), u) = (~ ~i) , U z = (~ ~I)' (3-14)

and set

I I I
Sx = :2ux, Sy = :2uy, Sz = :2 uz , (3-14')

Then we can easily find that these Sx, Sy, Sz satisfy (3-12') as well as (3-13').
Therefore Pauli proposed to use the matrices (3-14') as the matrices of Sx, Sy, Sz

in (3-8) and (3-10). Let us note that Pauli's matrices have the properties

U
2 = 1
Jl

uJlUV + UVuJl = 0

(/1 = x, y, z),

(/1 I- v; /1, v = x, y, z).

(3-14")

Now let me explain Pauli's suggestion more concretely. I told you earlier that the
wave function is in the form of (3-6), where, we note, the variable Sz takes only
two values, +I/2 and -1/2. We can then consider the functions Vr(x, +I /2)
and Vr(x, -1/2) to be components of a two-component quantity, or we can
consider that the wave function is a function which has two components. We
then can write

_ (Vr (x, +!))Vr- .
Vr (x,-!)

(3-15)

This way of writing (3-15) corresponds to considering the state vector (which
is a two-dimensional vector) in the spin state space to be a column vector.
And applying Sx, Sy, Sz (or Ux , u y , u z ) to the wave function Vr is nothing but
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multiplying the matrices (3-14') or (3-14) to the column vector. This was Pauli's
proposal. According to this idea,

and therefore

(3-16)

S = (~Vr(-n)
xVr I (I)

2 Vr 2

_ (-~Vr (-n)
SyVr- i (I)

2 Vr 2

(
~Vr 0) )

szVr = .
-~Vr (-n

(3-16')

Here Sz applied to Vr is indeed Vr(sz) multiplied by Sz. (For this discussion the
variable x is irrelevant, and I stopped writing it explicitly.)

This is Pauli's idea. If we consider it this way, the SchrOdinger equation

[ HO + HI + H2 + ~~] Vr(x, sz) = 0
I at (3-17)

is a set of simultaneous differential equations for the two functions Vr(x, + I/2)
and Vr(x, -1/2) and hereafter will be called the Pauli equation. For a stationary
state we replace Vr with

and determine the energy of the state by solving

[Ho + HI + H2 - E] ¢(x, sz) = O. (3-17')
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By this procedure we can calculate the level intervals within the doublet term
and the anomalous Zeeman effect. We have used as Ho the nonrelativistic
Hamiltonian. and therefore the fine structure formula cannot be derived cor
rectly, but we can make the approximation a little better on this point. Pauli
himself points out clearly that his theory is intrinsically nonrelativistic since
the spin degree offreedom is expressed as sx, Sy, sz, which is a vector in x. y, z
space only. He pointed out that in order to make his theory relativistic. he had to
introduce the antisymmetric tensor (a six-element vector) in Minkowski space,
but judging from Thomas' theory. the electron has only a magnetic moment in
its rest system, and therefore half of the six elements must be zero when the
electron is at rest. Pauli abandoned trying to create a relativistic theory. saying
that it is extremely difficult to apply such a condition to the spin degree of
freedom. Furthermore, just as in the theory of Heisenberg and Jordan. Pauli's
theory introduces the electron spin angular momentum of 1/2 and gO factor of
2 into HI and H2 arbitrarily. and the Thomas factor 1/2 is also introduced ad
hoc into H2. For these reasons Pauli knew his theory was tentative.

In his paper Pauli examined how the two components of (3-15) are trans
formed by rotation around the x, y. and z axes based on the invariance of his
equation (3-17) with respect to rotation. and he noticed that the transformation
is remarkably different from that of a vector. Pauli's discussion eventually leads
to the double-valued representation ofthe rotation group and spinors, but I shall
discuss these topics later.

Pauli also considers many-electron systems, but here we limit ourselves to
deriving an important theorem from Pauli's theory which is related to my next
lecture. The theorem is:

When there are two electrons (as long as the particle has spin 1/2, it could
be any particle), the wave function for which the sum of the two spins
equals I does not change its value when the spin vanables of the electrons
are exchanged (that is, the function is symmetric). The wave function

for which the sum becomes 0 changes sign when the spin vanables are
interchanged (namely. the function is antisymmetric).

The converse of this theorem is also valid.
Proof" Let us take the spin matrices of two electrons as 51 = (Six, Sly. Slz)

and 52 = (S2x, S2y. S2z). Then the square of the magnitude of the total spin
51 + 52 equals

and if we use (3-13'),

(I)
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Now we write the wave function 1/I(Slz, S2z) in the fonn of a column vector

1/1=

1/1 ( ~, n
1/1 ( ~.-n

1/1(-~, n
1/1 (-~, -n

(II)

(omitting the variables XI and X2 because they are not related to this problem)
and multiply the matrices SI .S2 = S1xS2x +SIyS2y +SlzS2z. We then get, using
(3-16'),

!1/1 ( ~, !)
~1/1 (-~, n-!1/1 ( ~,-n

~1/1 ( ~, -!) - !1/1 (-~, n
!1/1 (-~,-!)

If we use equation (I) here, we get

21/1( ~, n
1/1( ~,-n+1/I(-~, n

1/1(-~, n+1/I( ~,-n

21/1 (-~, -n
(III)

Now the total spin equals I means that from (3-13') lSI +s2121/1 = 1(1 + 1}1/I =
21/1, and the total spin equals 0 means lSI + s21 21/1 = O. In the fonner case, if
we compare (II) and (III), we find that it is necessary and sufficient if

This means

and therefore
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This equation is a necessary and sufficient condition for the total spin to be I.
In the latter case, it is necessary and sufficient that

Thus the condition we need is

(lVL

Q.E.D.

I talked at length about Pauli's theory, so let us proceed now. As I told you
earlier, Pauli himself was never satisfied with this theory. Perhaps he racked his
brains trying to make his theory relativistic, but probably for him it looked too
difficult. For these reasons the perfectionist had no other choice than to publish
a paper in which the spin was introduced ad hoc. It was Dirac, however, who
in one stroke solved these two problems of introducing spin and of deriving a
relativistic equation.

The problem of making quantum mechanics relativistic had already been
touched upon by SchrOdinger in 1926 when he published the fourth paper
in the famous series of papers "Quantization as Eigenvalue Problems I, II,
III, IV." The same type of equation he considered was also discussed almost
simultaneously by O. Klein and W. Gordon. All these ideas are to propose the
so-called Klein-Gordon equation in paper IV by SchrOdinger instead of the
nonrelativistic equation in paper I.

They proposed this because the equation is the simplest one for a free particle
(this means a particle without an external field) which yields the de Broglie
Einstein relation

E = hv,
h

p= -.
A

(3-18)

Here v is the frequency of the de Broglie wave and A its wavelength. SchrOdinger
found that he could not derive a result consistent with Sommerfeld's fine
structure formulas, contrary to expectation, when he tried to use this equation
to determine the hydrogen energy levels. Referring to this point in the fourth
paper, he mentions that this discrepancy would be removed if spin were taken
into account, but he did not proceed further. If I may digress here, de Broglie
discussed the idea of the phase wave along the line of relativity, and he



56 LECTURE 3

discovered the relation (3-18) as a result. For this reason, they say SchrOdinger
initially wanted to create wave mechanics from the Klein-Gordon equation,
which appears in his fourth paper. However, because he could not get the
hydrogen energy levels consistent with experiment, he postponed addressing
relativity and treated first the nonrelativistic hydrogen atom in his first paper.

Now let us discuss Dirac's achievement. As you know, the Klein-Gordon
equation is

(3-19)

Here Ao and Ar are the components of the four-vector potential of the externally
applied electromagnetic field. If as a special case we set Ao = Ar = 0, then we
obtain the formula without an external field, and the equation has a solution of
a plane wave

'I/t(X, y, Z, t) = e2rri (z/J..-vt).

If we substitute this into (3-19), we find that the relation

must be satisfied. This is nothing but the de Broglie-Einstein equation (3-18).
For this reason it was thought that (3-19) is a fundamental equation of relativistic
wave mechanics.

Dirac, however, questioned this idea. First of all, this equation is a differ
ential equation second-order with respect to time. The wave function in wave
mechanics should have the meaning of probability amplitude, and according
to his transformation theory, it must satisfy a differential equation first-order
with respect to time. (Indeed, both the SchrOdinger equation (3-4) and the Pauli
equation (3-17) are differential equations first-order with respect to time.)

Dirac therefore required the wave equation to be a differential equation first
order with respect to time even when relativity is taken into account. Now in
relativity, the time variable t and the space variables x, y, Z must be treated
equivalently, and therefore the equation sought should also be first-order with
respect to the space variables. If this is the case, the formula should not contain
the square of (-hal icat + eIc Ao) and (hal iaxr + elc Ar ) like (3-19), and
therefore it must be of the form
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[(-~~ + ~AO) -~ ar (~~ + ~Ar) - aome] (3-20)
I cat e L.J I aXr e

r=1
X 1/I(x, y, Z, t) = O.

Now we have these ar and ao in the formula. How shall we determine them?
Here Dirac used his extraordinary genius.

He thought that for a free particle without the external field Ao and Ar , the
de Broglie-Einstein relation (3-18) must be satisfied and therefore 1/1 must be a
solution of the Klein-Gordon equation. First in order to derive a second-order
equation from (3-20) for a free particle. that is,

[
lIa 3 11a ]--- - "'a -- -aome .Ir(x y Z t) =0i cat L.J r i aX

r
'I' ' , , ,

r=1

we apply to it an operator

[
lIa 3 11a ]--:-- + Lar-:-- +aome .
I cat r=1 I aXr

We obtain

[
lIa 3 11a ]--:-- + Lar-:-- +aome
I cat I aXrr=1

[
lIa 3 11a ]. --:--a - Lar-:--

a
- aome 1/I(X, y, z, t) = O.

let I Xrr=1

(3-21)

(3-21 )

(3-21 ')

Dirac demanded that this equation be the Klein-Gordon equation. Such a
requirement cannot be fulfilled ifao, ai, a2, a3 are ordinary numbers. However,
Dirac found that it is possible to satisfy this requirement if they are matrices.
In this case, (3-21') becomes

(3-21")

and, therefore, if the matrices ao, ai, a2, a3 have the properties
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«2 = 1 (11 = 0, I, 2, 3) (3-22)
JL

«JL«v + «v«JL = 0 (11 i= v; 11, v = 0, 1,2, 3),

then the requirement is fulfilled. He then introduced

~~G
0 0

~) «, ~ (~
0 0

D
I 0 0 I
0 -I I 0
0 0 -I I 0 0

«2~ G
0 0 -I) C 0 I

-D0

~ «' ~ ! 0 0
(3-23)

-i 0 0 0
0 0 -I 0

as the simplest matrices that satisfy (3-22) and used them in (3-20).
When these 4x4 matrices are introduced into (3-20), Vt accordingly becomes

a column vector with four components

(3-24)

and therefore (3-20) becomes a set of simultaneous differential equations with
respect to the four functions Vtl, Vt2, Vt3, Vt4. It is interesting to compare the
matrices (3-23) and Pauli's matrices (3-14); we immediately notice that Dirac's
4 x4 matrices may be written using Pauli's 2 x 2 matrices (3-14), the 2 x 2 unit
matrix, and the zero matrix

1= (~ ~) o=(~ ~) (3-25)

as

«0 = (~ ~1) «I = (0 ~)0"\

«2 = (0 c;:) «3 = (0 i) (3-23')
0"2 0"3

(Here we use the subscripts 1,2,3 instead of the subscriptsx,y, z.) Accordingly,
it is convenient to write the four-component column vector (3-24) as
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(3-24')

using the two-component column vectors

(3-26)

Dirac applied his equation to the case of a central force and showed that the
correct (that is, with the correct Thomas factor) energy level spacing can be
derived in the first-order approximation. Moreover, he showed that the orbital
angular momentum f is not a conserved quantity and that a conserved quantity
is obtained only when ! (~:) is added to it. Thus a conserved quantity cannot
be obtained from the orbital angular momentum alone but is obtained only

when ! (~:) is added, meaning that the electron has spin angular momentum
and that

spin angular momentum = ~ ( ; ~) (in units of 'h) . (3-27)

Moreover, Dirac found that if an external field is present, then, unlike the case
for a free particle, the procedure used for obtaining (3-21 ') from (3-21) does not
yield the Klein-Gordon equation. Dirac found that this difference has the form
of the interaction between the external field and the spin magnetic moment. In
this argument, the expression - (~:) appears in the part of the formula expected
for the spin magnetic moment, and therefore

spin angular momentum = - ( ; :) (in units of e'hj2mc) , (3-27')

and this means gO = 2. Dirac further discussed how the four-component
quantity (3-24) should be transformed in order for his equation to be Lorentz
invariant. This is a generalization of Pauli's idea about the two-component
quantity. Thus Dirac started only from the requirements of relativity and
transformation theory and, without using any ad hoc assumption, showed that
the spin angular momentum of the electron, its magnetic moment, and the
Thomas factor can all be derived correctly.

We mortals are left reeling by this staggering outpouring of ideas from Dirac.
His first requirement is that the equation be linear in time. Such a thought had
not occurred to SchrOdinger, Klein, Gordon, or even Pauli. Even if it had been
realized, it is beyond our humble expectations that this requirement lead to the
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electron spin and to the detennination of its magnetic moment. They say Pauli
often referred to Dirac's thought process as acrobatic, and the development
of the famous equation bearing Dirac's name shows this characteristic most
clearly. He seems to have been euphoric about this work as can be sensed from
the following sentences in the introduction of his paper.

Namely, he starts the paper saying that Pauli and C. G. Darwin had already
discussed electron spin. He says, "The question remains as to why Nature
should have chosen this particular model [such as the spinning electron] for
the electron instead of being satisfied with the point-charge." He continues, "It
appears that the simplest Hamiltonian for a point-charge electron satisfying the
requirements of both relativity and the general transfonnation theory leads to
an explanation of all duplexity phenomena without further assumption."

However, on another occasion Dirac also mentioned the following (this was in
his lecture in 1969 when he was awarded the Oppenheimer Memorial Prize). He
calculated the problem of the alkali atom only to the first order ofapproximation
in this paper. He did not try to carry out an accurate calculation for the hydrogen
atom and derive the fine structure fonnula which was then known to agree
with experiment perfectly. He did not do that because he was afraid that if he
calculated that much and happened to obtain a result that did not agree with
the fonnula, he would thus find that his theory was not correct. Because of his
immense confidence in the correctness of his theory, even a I percent fear that
his expectation might be crushed would perhaps also have been very big. This
sentiment is as illogical as that of a sick person who does not want to consult a
doctor for fear of being told he has cancer. However, even theoretical physicists
often become prisoners of such irrationally twisted sentiment. By the way, the
work to derive the fine structure fonnula was done by Darwin and Gordon.

This work of Dirac's is definitely the work of genius; however, I believe it
was very much stimulated by Pauli's previous work. Dirac's idea to use the
matrix which satisfies (3-22) in order to relate the first-order equation (3-20)
and the Klein-Gordon equation may have been catalyzed by the fact that Pauli's
matrices satisfy (3-14"). Also, the adoption of the idea of the simultaneous
differential equations using the four-component quantity (3-24) may have been
hinted at by Pauli's creation of the simultaneous differential equations (3-17)
using the two-component quantity (3-15). In fact, Dirac points out explicitly
in his paper that Pauli's O'r(r = 1,2,3) satisfy (3-22). He further states that if
we take Pauli's 2 x 2 matrices, we can find only three which satisfy (3-22), and
therefore he considers 4 x 4 matrices. Furthennore, Dirac's way of proving the
Lorentz invariance of (3-20) is precisely the generalization of Pauli's proof that
Pauli's equation is invariant with respect to rotation around the x, y, z axes. For
these reasons I said earlier that Pauli's work is the forerunner of Dirac's. Dirac's
work was completed in January 1928, less than one year after Pauli's work.

If this work of Dirac's clarified the reason why Nature was not satisfied by a
simple point charge but required a charge with spin, it might emerge as a natural
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conclusion that the proton will also have a spin 11 /2 and a magnetic moment
e1l/2mp c (m p is the mass of the proton.) In the actual history, however, the
fact that the proton has spin 11 /2 had already been discovered half a year or
so before Dirac's work was published. Now from a layman's point of view,
the establishment of the proton spin emerged from a very unexpected problem.
That was the problem of the specific heat ofhydrogen at low temperature. There
is an interesting episode on how proton spin was established from specific heat,
but let me talk about it in the next lecture.

Finally, let me add some comments, which you might or might not find as
superfluous as legs on a snake. Just as Pauli's matrices ux , uy, U z were related
to the x, y, z components of spin angular momentum, we can regard the six
matrices

I
-;-aOa2a3
I

iaoal

I
-;-aOa3al
I

iaOa2

I
-;-aOala2
I

iaOa3

(3-28)

formed from Dirac's a-matrices as components of one six-vector, and we can
regard them as the relativistic generalization of electron spin. In fact, if we use
(3-23), the first three are

(3-28')

and they look apparently different from the spin angular momentum (3-27),
but their expectation values for an electron at rest agree with those of (3-27).
Moreover, we can prove that the three quantities

. ( 0 iUI)laOal = . 0
-lUI

. ( 0 i(3)laOa3 = . 0 '
-IU3

(3-28")

have expectation values of 0 for an electron at rest. I told you before that Pauli
realized the necessity to relativistically six-dimensionalize his spin matrices but
had great difficulty introducing the condition that half of them must be 0 in the
rest system. Dirac, by using 4 x 4 matrices, has done this quite simply. Thus
Dirac has derived everything about electron spin through Lorentz invariance
and that the wave equation must be first order without using a model at all.
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It may be since this work of Dirac's that we started not to think about self
rotation or rotation from the words electron spin. (It is a different matter for
nuclear spin.) In any case, if the real nature of electron spin is something like
this, it is truly "classically indescribable," is it not?



LECTURE FOUR

Proton Spin

Three Scholars Tackle the Hydrogen Molecule

Now how did the specific heat of the hydrogen molecule and proton spin come
to be connected?

We can say that right from the beginning, quantum mechanics had an
unseverable relation to the problem of specific heat. For example, it may be
said that the problem associated with blackbody radiation was how to eliminate
the infinite value of the "specific heat of vacuum." Also, the fact that the specific
heat of a diatomic molecule is (3/2)R at low temperature and not (5/2)R as
predicted from classical theory was first explained only by quantum mechanics.
This is because the rotational energy of molecules is quantized, and therefore if
kT/2 , which should be distributed according to the equipartition law, becomes
smaller than the quantum of rotation, then rotational motion cannot occur.

A diatomic molecule is a mechanical system in which electrons are moving
around two nuclei that are arranged like a dumbbell. Therefore, its energy is
given by the sum of four energies: the electronic energy Eel, the vibrational
energy EYih corresponding to the expansion and contraction of the distance
between the nuclei, the overall molecular rotational energy Emt. and the trans
lational energy of the center of gravity Elf.

E = Eel + EYib + Eml + Elf (4-1 )

Here we have neglected the interaction between different motions, but this has
little effect on the following discussion.

Of these four energies only Elr and Eml contribute to the low-temperature
specific heat. (Since both Eel and EYib have large quanta, we consider suffi
ciently low temperatures such that kT /2 is much smaller than these quanta.)
Now since Elr is not quantized, its contribution to the specific heat is (3/2)R
all the way down to 0 K. In other words, if we consider the specific heat of one

63
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molecule instead ofa mole ofmolecules, then the contribution from translational
motion is (3j2)k. Therefore, only E ro! is in question.

Now please remember the elementary quantum mechanics of rotational
energy. According to it, we obtain

J =0,1,2, ... (4-2)

for the rotational energy, where I is the moment of inertia of the dumbbell.
Here J is the rotational quantum number, which gives the angular momentum
measured in units of1l. For a given J, the state is degenerate with a multiplicity

g(J) = 2J + I (4-3)

corresponding to the 2J+ I directions ofquantization ofthe angular momentum.
Now except for hydrogen nuclei, the nuclei forming the dumbbell are par

ticles with structure. Then, as Pauli once considered, nuclei may have spin or
may not be spherical. (Around 1924, Pauli assumed that atomic nuclei have
spin to explain the hyperfine structure of spectral lines.) If that is the case, then
when the two nuclei are connected in a dumbbell fashion, we have to consider
in which direction the nuclei are oriented with respect to the dumbbell axis.
We then must consider, in addition to the direction of the dumbbell itself with
respect to space, a fourth degree of freedom corresponding to the direction
of each nucleus with respect to the dumbbell axis. Namely, just as we gave
the electron the spin degree of freedom, we also have to give nuclei a fourth
degree of freedom related to their orientation. (We do not know yet whether
this is the direction of spin or, if the nuclei are nonspherical, the direction of
the ellipsoids.) Then there is an energy related to the fourth degree offreedom
(written, say, E4), and we must use instead of (4-1)

(4-1 ')

the contribution of E4 will naturally appear in the specific heat, and therefore
by examining the specific heat we can get information on this new degree of
freedom.

This proposition sounds fine, but actually only the first half is correct; the
second half is not good as stated. The reason is that, even if such a degree of
freedom existed, its energy is extremely small and does not affect the specific
heat. If this energy were large enough to affect the specific heat, its effect should
naturally appear in the band spectra of molecules, but this is not experimentally
observed. (The fourth degree of freedom of the electron clearly appears as a
doubling of the spectrum. But even that does not affect the specific heat.) The
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connection between the specific heat and the fourth degree of freedom results
from an entirely different physical effect.

What is this effect? It is a discovery as important in the development ofquantum
mechanics as that of electron spin; that is, the discovery of the relation between
the statistics of a particle and the symmetry of its wave function. As you know,
there are two kinds ofparticles that appear in quantum mechanics: those obeying
Bose statistics (bosons) and those obeying Fermi statistics (fermions). Around
1927, in the period I am now discussing, only the photon and the electron were
clearly known to belong to such groups; the former is representative ofbosons
and the latter of fermions. There was a conjecture that the a-particle is very
likely a boson. I might note here that saying a fermion obeys Fermi statistics is
equivalent to saying the particle follows Pauli's exclusion principle.

In the third lecture I said that two problems remained when Dirac's trans
formation theory was completed. One was spin, and the other was making the
theory relativistic, but now I find I forgot to mention another one-namely, how
to incorporate into quantum mechanics these two types of statistics.

Once again, Dirac and Heisenberg came to the rescue and answered this
problem in 1926. How the two types of statistics were discovered and how they
were incorporated into quantum mechanics is a very interesting subject in itself,
but let me cut it short and give only the conclusion. Dirac and Heisenberg found
that in a mechanical system composed of identical particles such as electrons
or photons, if the wave function is symmetric with respect to an interchange of
particles and only such states are realized, then the assembly of particles obeys
Bose statistics, and if the wave function is antisymmetric with respect to an
interchange of particles and only such states are realized, then the assembly of
particles obeys Fermi statistics. This discovery played a very important role in
problems of mechanical systems composed of many identical particles, namely,
in many-body problems. That story is also extremely interesting, but I will touch
on one such example in the next lecture. Now let us return to molecules.

The diatomic molecule we are considering is a mechanical system composed
of two nuclei and several electrons (in the case of H2, two electrons). In the
approximation that the total energy is expressed by (4-1 '), its wave function can
be expressed as the product of the wave functions of each motion

(4-4)

Here rP is the product of the wave functions 1/Iel.1/Ivib,1/Irot. and 1/Itr, which
correspond to already known degrees of freedom. The wave function 1/14
corresponds to the fourth degree of freedom, whose identity remains a mystery
at this stage. It is a function of the two coordinates that describe the fourth
degree of freedom for the two nuclei.



66 LECTURE 4

Now in the elementary theory of rotating molecules, which I gave you earlier,
the state of a molecule is expressed just by o/rol and o/tr in (4-4). Sometimes
it is sufficient to discuss the problem of low-temperature specific heat by this
simple theory. (If there is a fourth degree offreedom, we add 0/4.) However, for
discussing band spectra, o/el also plays an important role, and a more advanced
theory is necessary. These advanced theories of diatomic molecules have been
developed by various people, but Hund particularly made a big contribution to
the treatment of o/el and the theoretical interpretation of experimental results.
Hund also triggered the quest to obtain information on the fourth degree of
freedom of the proton from the specific heat of the hydrogen molecule. Since
a substantial effort is required to go into the detailed molecular theory here, let
us simply proceed with the elementary theory mentioned earlier.

Looking at Hund's study, we find that if the state of the electron is I ~

according to his notation (you may think of this as similar to the I S state of
atoms), then the elementary theory ignoring o/el can be applied to our problem.
For example, in the I ~ state, Erot is given by (4-2), and the degeneracy of the
level is given by (4-3). (We ignore the fourth degree of freedom for the time
being.) Furthermore, just as in the elementary theory, o/rot can be expressed as

o/rot = p!t(cos(:-)eiM<f> M = J. J - I, J - 2, ... , -J + I, -J, (4-5)

using the angles (~) and <f> to specify the orientation of the dumbbell axis.
Here we limit our scope to homonuclear molecules such as H2 or 02. The

reason is that in those cases, the statistical problem of nuclei (whether they are
bosons or fermions) which I referred to earlier plays an important role, and
which statistics is followed affects the rotational specific heat of the molecule
through the existence of the fourth degree of freedom. Specifically, if the two
nuclei are bosons, 0/ must be symmetric with respect to the interchange of the
nuclei, and if they are fermions, 0/ must be antisymmetric. This is reflected in
the specific heat for the following reasons.

Let us consider the factor rP in 0/ in (4-4) and examine whether rP is symmetric
or antisymmetric with respect to the interchange of two nuclei. Since only the
spatial coordinates of the two nuclei are involved in rP and the enigmatic fourth
coordinate is not included, we can examine the symmetry of rP from the known
theory. Especially when the electron is in the I ~ state, we can use elementary
theory and easily determine the symmetry of rP. Luckily, in H2 the ground state
of the electron is I~. (By contrast, in 02 it is 3L)

Let us take the spatial coordinates of the two nuclei as XI and X2. In the
elementary theory, we ignore o/eI. leaving

rP = o/tr . o/vib . o/rot' (4-6)
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in which,

· . XI + X2
1/Jlr IS a functIOn of 2

1/Jvib is a function of IXI - x21

XI - X2
1/Jrol is a function of .

IXI - x21

(4-7)

It is easily seen that (XI + x2)/2 and IXI - x21 are invariant with respect to
interchange Ofxl and X2. Hence, 1/Jtr and 1/Jvib are always symmetric with respect
to the interchange of XI and X2. (XI - x2)/lxl - x21, in contrast, changes sign
when XI and X2 are interchanged. Therefore, it is not that obvious whether
1/Jrol is symmetric or antisymmetric. The following argument shows that it is
symmetnc if J is even and antisymmetric if J is odd.

In order to see this, we introduce angles 8 and <I> to represent the orientation
of the unit vector (XI -x2)/lxl -x21. Namely, let the spherical polar coordinates
of (Xl - x2)/lx\ - x21 be (I, (~), <1». Now, suppose we interchange XI and X2

on the left-hand side of (4-5), which is

(
XI - X2 ) M iM<I>1/Jrol = PJ (cos 8)e .

IXI - x21

Since (X2 - xl)/lx2 - xii = -(XI - x2)/lxl - x21, if the polar coordinates of
(XI - x2)/lxl - x21 are (I, (~), <1», the coordinates of -(XI - x2)/lxl - x21 are
obviously (I, rr - (~), rr + <1», and therefore we have

On the other hand, as is well known,

pflcos(rr - Eo»]eiM(Jr+<I» = pf(-cos(~»(-I)MeiM<I>

= (-I)J pf (cos (~»eiM<I>,

and thus we have

(
X2 - XI ) J ( Xl - X2 )

1/Jrol I I = (-I) 1/Jrol I I·X2 - XI XI - X2

This means that 1/Jrol is symmetric with respect to interchange of XI and X2 if J
is even and antisymmetric if J is odd.

In summary, we can conclude that, for the function rP which is a product of
1/Jtr, 1/Jvib, and 1/Jrot.
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. {symmetric with respect to interchange of x I and x2 if J is even
rjJ IS . ... .. (4-8)

anUsymmetnc wIth respecl to Inlerchange of XI and X2 If J IS odd

It might be easy to understand these conclusions if they are depicted as in figure
4.1. A ofthis figure shows the rotational energy levels given by (4-2). The solid
lines show levels which are symmetric with respect to the nuclear permutation,
and the dashed lines are levels which are antisymmetric. I shall discuss the
meaning of B later.

It took some time to prepare for our discussion, but now we may proceed to the
problem of whether the nucleus is a boson or a fermion. Let us first assume that
the nucleus does not have a spin and furthermore that it is spherically symmetric.
For this case we do not need the fourth degree of freedom. Therefore, 1/J = rjJ,
and the symmetry of rjJ is at the same time the symmetry of 1/J. Since from
the conclusion of (4-8) only levels with symmetric 1/J exist if the nucleus is a
boson, the dashed levels of figure 4.1 A do not exist. If the nucleus is a fermion,
then only levels with antisymmetric 1/J appear, and thus the solid-line levels
of figure 4.1 A do not exist. For these reasons the levels which are realized are
those given in figure 4.2.

If this is the case, the rotational specific heat will naturally be different
depending on whether all the levels in figure 4.1 A appear, only the left-hand

-----------5 ---- ---5

4 - 4
~

~... ...
+ +

'"') '"')
~

~

'"') '"')

'1:1~
-----------3

'1:1~
- --- 3
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Figure 4 I (A) Rotational levels for I E. (B) Rotational levels for In.
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-----2
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J J

Figure 4.2 Rotational levels for bosons (left) and rotational levels for fennions (right),

levels in figure 4.2 appear, or only the right-hand levels of figure 4.2 appear.
Also, in a band spectrum, if the levels are as shown on either the left or right
side of figure 4.2, then quite a few levels drop off. Therefore, by measuring the
specific heat or analyzing the band, we can immediately determine whether the
nucleus is a boson or a fermion.

However, the situation is a bit more complicated if there is a fourth degree
of freedom, for example, spin. In this case, 1/J =1= rjJ, and we cannot use (4-8)
directly to discuss the symmetry of 1/J. In this case 1/J = rjJ • 1/J4, and since
(symmetric function) x (symmetric function) = (symmetric function), (sym
metric function) x (antisymmetric function) = (antisymmetric function), and
(antisymmetric function) x (antisymmetric function) = (symmetric function),
it is obvious that

'f ' , rd Ii {1/1 to be symmetric, 1/14 must be symmetnc
I ¢J IS symmetnc, then In 0 er or

1/1 to be antisymmetric, 1/14 must be antisymmetric

'f" . 'rd { 1/1 to be symmetnc, 1/14 must be antisymmetnc
I ¢J IS antIsymmetnc, then In 0 er for

1/1 to be antisymmetric, 1/14 must be symmetric.

Then we combine this with (4-8) and conclude

, . { --- level is paired with a symmetric 1/14
If nucleus IS a boson

- - - - - level is paired with an antisymmetric 1/14
(4-9)
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{
--level is paired wilh an anlisymmetric 1/f4

if nucleus is a fermion
- - - - - level is paired with a symmetric 1/f4 .

For these reasons, if the nucleus has the fourth degree offreedom, then neither
solid nor dashed levels disappear, but in each, 1/14 has a different symmetry.
Depending on whether 1/14 is symmetric or antisymmetric, the energy £4 may
differ slightly, but the difference is extremely small, and we can consider (4-2)
to hold as it is. Therefore, the position of the levels is just as in figure 4.1 A.

However, it is quite possible that the degeneracy of level £4 may differ
depending on whether 1/14 is symmetric or antisymmetric. For such cases the
degeneracy of £ as a whole in (4-1 ') is different, and this difference might be
detected by experiment. For example, the intensity of spectral lines will be
stronger if the degeneracy of a level is larger. Also, if we calculate the specific
heat using statistical mechanics, this degeneracy becomes the statistical weight
and thus affects the result. It was this link that Hund spotted.

The case of spin provides a good example of the degeneracy of level £4
depending on the symmetry of 1/14. For example, suppose the spins of the two
nuclei are each 1/2. According to the theorem which I proved in the third lecture,
if 1/14 is symmetric with respect to interchange of the spin coordinates. the total
spin is I, and therefore triple degeneracy will occur related to the number of
azimuthal quantizations of spin. If 1/14 is antisymmetric with respect to the
interchange of spin coordinates, the total spin is O. and there is no degeneracy
(namely, the degeneracy is I). These are the hard facts.

Now in general we write the degeneracy of level £4 as

gs if 1/14 is symmetric and

ga if 1/14 is antisymmetric.

Then from (4-9) we conclude that the degeneracy of level £4 is

j
'f hi' b h {gs for a - level
I t e nuc eus IS a oson, t en ga for a level

of hi' " . h {ga fora-level
I t e nuc eus IS a lermlOn, t en gs for a level

(4-10)

So far we assumed that the electronic state is I E and derived (4-10) using an
elementary theory. However. we see from Hund's theory that the conclusion of
(4-10) holds for any electronic state. The only difference is that the rotational
level scheme differs from that of figure 4.1 A. I give you only one example,
shown in figure 4.1 B. This is the case in which the electronic state is not I ~

but the state which is called I n in Hund's notation. (This is similar to I P in
atomic states.) As you can see from the figure, the energies of the levels are also
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given by (4-2) even in lhecase ofa In state. but the 1 = 0 level does not exist,

and 1 = I. 2. 3•... Also. each rotational level is already doubly degenerate
(in addition to the degeneracy of 21 + I from the azimuthal quantization)

even before considering the fourth degree of freedom. ano the components are
depicted as one solid and one dashed. In figure 4.1 B I express this degeneracy
by.:....:..:, using a solid line and a dashed line drawn very close together.

So regardless of whether the electronic state is IE or In. if the degeneracies

of the solid and dashed levels are different. then that difference will appear
in the intensities of band spectral lines. Specifically. if the nucleus is a boson,
the ratio of the intensity of the line corresponding to a transition from a solid

level to a solid level to that from a dashed level to a dashed level should be

gs : So. and if the nucleus is a fennion. it should be So : SS. The transition from
a solid level to a dashed level is forbidden in our approximation. (In a higher

order approxim81ion. the transition becomes allowed. but with an extremely
small probability.) If we reiterate this conclusion using 1 and supposing that
the terminating level is IE. then transitions to levels with 1 = O. 1.2.3.4•...
will have the intensity alternation 8t ; gtl : gs : go : ••. if the nucleus is a
boson and an alternation of gtl : gt : go : gs : ... if the nucleus is a fennion.
Therefore. for example, if the fourth degree of freedom of the nucleus is spin

and if it is 1/2. (hen from the last lecture

gs = 3 and go = I. (4-11)

and therefore the intensity alternation will be

Figu~ 4.3 Friedrich Hund (1896- ),
1927. ICounesy of AlP Emilio Segrt
Visual Archives, Franck Collectionl



72 LECTURE 4

for a boson 3: I : 3 : I : .

for a fermion I : 3 : I : 3 : .

(4-11 ')

For these reasons, ifwe examine the band spectrum of the hydrogen molecule
for such an intensity alternation and determine the intensity ratio, then we
can determine the spin of the proton and also whether protons are bosons or
fermions. When Hund developed this idea in early 1927, there were unfor
tunately not enough data on the H2 band spectrum. Therefore, he decided to
use the already-known experimental value ofthe rotational specific heat of the
hydrogen molecule.

Let us consider hydrogen gas at a temperature T. According to statistical
mechanics, the average rotational energy for one molecule is given as

(Erot ) = ~ [J~en f3g(J)E(J)e -fil) + J~d g(J)E(J)e -W)] (4-12)

~ -Ell) ~ -Ell)
Z = L...J f3g(J)e----.T + L...J g(J )e----.T .

J =even J =odd

Here E(J) and g(J), given by (4-2) and (4-3), respectively, are the rotational
energy and the degeneracy of azimuthal quantization, and

degeneracy of E4 when J even
f3 = --,--==-----=----...,---------,-----,--:-:-

degeneracy of E4 when J odd .

If we remember (4-10),

f3 -- gs ·f h . bI t e proton IS a oson
go
go

= if the proton is a fermion.
gs

(4-13)

(4-13')

So if the fourth degree of freedom of the proton is spin and its value is 1/2,
then we should use (4-11) for gs and go. Therefore

f3 = 3 ifthe proton is a boson
I

= "3 if the proton is a fermion,

(4-13")

but for the time being, f3 is undetermined.
When Hund was calculating the specific heat, the moment of inertia I of the
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hydrogen molecule was also unknown. Therefore he gave f3 and I a variety
of values, calculated (Erot ) by (4-12), and determined the specific heat by
the formula

C _ d{Erot )
rot - dT .

From this he found that

f3 :::::: 2 and I :::::: 1.54 x 10-41 g cm2

(4-14)

(4-15)

gave the best fit to the experimental Crot at low temperature. Supposing that the
spin of the proton is 1/2, this value of f3 does not agree with either the value 3
(assuming the proton to be a boson) or the value 1/3 (assuming the proton to be
a fermion). He said in his paper that the agreement with experiment is not that
bad for f3 = 3 if I = 1.69 x 10-41 g cm2, but he refrained from concluding that
the proton is a boson with spin 1/2. Hund finished this work in Bohr's institute
in Copenhagen and published it in February 1927.

While Hund was whipping this up, a physicist by the name of Hori arrived in
Copenhagen. This scholar was an experimental spectroscopist, and in short he
is Takeo Hori, who graduated from Kyoto University and became a professor
in Hokkaido University.l He was then at the Lu Shun Institute of Technology,
and he went to Copenhagen to make the most of his expertise in spectroscopy.
We can imagine that the problem of the hydrogen molecule was a hot topic
there because Hund was also in Copenhagen at that time. So Bohr suggested
to Hori that he study the band spectrum of H2. Hori therefore performed a
very elaborate experiment and a laborious analysis on the band spectrum of
the hydrogen molecule which had been discovered by Werner only in the
previous year, 1926. As a result, he discovered the intensity alternation in
the hydrogen rotational spectrum. He found that the intensities of spectral
lines are

weaker for transitions between levels with even J and

stronger for transitions between levels with odd J.
(4-16)

He did not state the intensity ratio, but if we judge from the figure given by
him, it looks like I:3. As I shall tell you later, when a scholar by the name of
D. M. Dennison asked him about the intensity ratio, Hori answered that it was
approximately 1:3.

I. Tomonaga could have said much more here since he was personally close to Hori. Hori was
one of Tomonaga's physics instructors. and he also married Tomonaga's older sister.
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Figure 4.4 Japanese studying in Bohr's inslilllle. 1926. from (he len: ¥oohio Ni~hina. Shin·idli
Aoyama (1882--1959). Takeo Hori (1899-1994). and Kenjiro Kimura' 1896 -1911&)

This result does not agree at all with Ihe conclusion that Hund obtained from
the specific heat. From the specific heat Hund obIained {3 <::::: 2. which means
that spectral lines with even} have to be stronger than those with odd} by about
a factor of2. This is clearly opposite to Hori's result (4-16). Funhermore. Hori
could determine the moment of inenia from the band spectrum and obIained

(4-16')

This is also very different from Hund's result (4~ 15). Hori pointed these out.
When Hori was summarizing his experimental result" at Copenhagen. Den

nison of the University of Michigan was aroused by the discrepancy between
Hund's and Hori's results. Therefore. he went to Copenhagen and asked to read
the manuscript ofHori's paper prior to publication. As a result he gOI an idea

Dennison noticed lhat Hori had not found any line corresponding to the
Iransition from solid to dashed levels. As I told you earlier. this transition
is forbidden in the first approximation, but it may be weakly allowed in a
higher approximation. If this is the case. there could be a weak spectral line
corresponding to the transition. but in fact there is none. This means that
the probability of a transition from solid to dashed levels is extremely small.
Funhermore. Dennison also realized that theoretically this probability must be
very small. If this is the case. he thought then a long time is required for a
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hydrogen molecule to undergo the transition from an even} state to an odd }
state and vice versa, so much so that the time for the experimental measurement
of specific heat is too short for the transition to occur during the experiment.
In other words, the experiment may be conducted without establishing thermal
equilibrium between molecules with even} and those with odd }. If this is
the case, it is natural to expect that Hund's conclusion does not agree with
experiment because the formula (4-12) which Hund used was based on the
assumption of thermal equilibrium. This was Dennison's idea.

Therefore, he calculated the specific heat by considenng the gas with even}
and the gas with odd} as separate gases which do not interconvert. According
to this idea, we can write the rotational energy of the gas with even} and that
of the gas with odd} as E~~tn and E~d, respectively, and calculate (E~~tn) and
(E~d) separately. They are

-E(ll
g(})E(J) e----.T(E even ) = _1_ '"

rot Z L...J
even J=even

'" -E(J)
Zeven = L...J g(J) e----.T;

J=even

I '" -E(ll
(E~d) = -- L...J g(})E(J) e----.T

Zodd J=odd

'" -E(l)
Zodd = L...J g(}) e---.r.

J=odd

(4-17)even

(4-17)odd

If we make the mixing ratio of the two gases p : I, then the energy of the gas
mixture is obviously

(4-18)

Therefore, we calculate the specific heat Crot = d(Erot )IdT by using this (Erot ).

Based on this idea, Dennison calculated Crot for a variety of values of p and
I, trying to find the values that give the best computed Crot . He thus found

I
p ="3 and 1= 4.64 x IO-4I g cm2. (4-19)

The value of p = 113 agrees with the spectral intensity ratio he learned from
Hori, and also the value of 1,4.64, agrees very well with Hori's 4.67.

Dennison concludes his paper by stating that the discrepancy between Hund's
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calculation and Hori's experiment had been completely resolved and left it
at that.

However, two weeks after he submitted the paper, that is June 3, 1927, he sent
an addendum to the paper dated June 16, 1927. In this addendum he pointed
out for the first time that the mixing ratio of 1/3 : I means that the spin of the
proton is 1/2. He first says that this ratio of 1/3 : 1 is the mixing ratio ofJ-even
and J-odd gas at room temperature and concludes that this means precisely that
the proton is a fermion of spin 1/2.

I am not absolutely sure, but I suspect from these points that Dennison initially
did not realize that his work was a very important one related to the proton
spin. Indeed, he chose as the title of the paper "A Note on the Specific Heat of
the Hydrogen Molecule," a rather modest title, and took a style as if he were
simply commenting on the papers of Hund and Hori. I suspect that after he had
submitted the paper, he realized the importance of his work and added the note
added June 16.... 2

So I would also make an addendum here, added ... It is whether the p of
p: 1 agrees with f3 in (4-13'). The reason I worry about this is that only when
they agree can we conclude from Dennison's p = 1/3 that f3 = 1/3 and from
that can we say using (4_13") that the proton is a fermion with spin 1/2. The
argument goes as follows.

As you probably know, according to statistical mechanics, if hydrogen gas
is in thermal equilibrium,

~ -E(l) ~ -E(l)

p(T) : I = L..J f3g(J) e"""Ir: L..J g(J) e"""Ir.
J=even J=odd

In order for this to agree with f3 : I, we must have

~ -E(}) ~ -E(l)

L..J g(J) e"""Ir = L..J g(J) e"""Ir,
J =even J =odd

and this is not in general true. However, if T is sufficiently large so that
kT » 11 2 /21, this relation holds to a sufficiently good approximation. For
this reason,

p(room T) = f3.

As Dennison says, if his p is the mixing ratio at room temperature, then we
can conclude from p = 1/3 that the proton is a fermion with spin 1/2. Then

2. According to Dennison's account, he knew full well its import Dennison D M 1974 Recol
lections of Physics and Physicists during the 1920's Am. J. Phys.42 1051-1056.
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on what ground did Dennison interpret p not as p(T) but as p(room T)? It is
precisely at this point that Dennison differed from Hund.

According to Dennison's idea, the hydrogen molecules used for the exper
iment had been kept at room temperature for a long time. Therefore, before
the experiment was started, the mixing ratio was p(room T) : I. During the
experiment, this gas was put into a flask, and the specific heat was measured
by cooling the gas to a very low temperature. However, even after cooling in
the flask, the mixing ratio remains at p(room T) : I and not p(T) : I because
the transition between solid and dashed levels takes a very long time. This is
Dennison's key idea. Ifinstead p(T) is used for p, then (Erot ) of(4-18) becomes
the same as that of (4-12) used by Hund. (4-12) is by no means incorrect, but
Hund forgot to examine whether the condition needed for that form was actually
satisfied by the experiment and therefore got the wrong answer. Even Hund
made such a mistakeP You should be very careful in using formulas.

I have talked long enough, so I conclude here the episode of Hund, Hori,
and Dennison tackling the hydrogen molecule. Perhaps I spoke too long, but I
thought most of the audience did not know how the proton spin and statistics
were determined. Subse,!uently, O. Stem determined not only the spin of the
proton but also its magI etic moment by a direct method (bending a molecular
beam with a magnetic I.eld, his specialty). That was 1933, several years later.

3. Tomonaga is being unfair to write that "Hund forgot to examine. " It was beyond anyone's
imagination at that time that the ortho- and para-hydrogen require such a long time to interconvert
It was the separation of ortho- and para-H2 by Bonhoeffer and Harteck [Bonhoeffer K F and
Harteck P 1929 Uber Para- und Orthowasserstoff Z Phys. Chem 84 113-1411 and by Eucken
and Hiller [Eucken A and Hiller K 1929 Der Nachweis einer Umwandlung durch Messung der
spezifischen Warme Z Phys. Chern. 84 142-1681 which gave evidence for Dennison's argument.



LECTURE FIVE

Interaction Between Spins

From the Helium Spectrum to Ferromagnetism

In lecture 4 I discussed the hydrogen molecule. Compared with the great
mainstream of the development of quantum mechanics, which I talked about
in lectures I through 3, the research on molecules is like a small eddy near a
riverbank. However, the spectacle of leaves whirling in such an eddy is also
quite captivating. As I told you in the previous lecture, it often happens that
sometimes from this recess in a riverbank a current such as proton spin = 1/2
comes out and joins the main stream.

However, it also often happens that a current near the bank makes its own
channel, and more water collects in the area until the channel grows to be a
large, separate river that branches out from the main stream. As you know,
from around 1927 to 1928 after the framework ofquantum mechanics had been
established, solid state physics rapidly grew like a branch of such a river and
developed into a gigantic new discipline.

Today I would like to reflect on how to treat the interaction between electron
spins when a mechanical system has many electrons. If I do that, I shall
necessarily touch upon a major problem in solid state physics-the problem
of ferromagnetism, which had been awaiting an answer for a long time.

The spin of the electron was discovered from the problem of atomic spectra. I
discussed this in lectures I and 2, taking as examples the simplest alkali metal
and alkaline earth. Now for the case ofan alkali atom, there is only one electron
outside the closed shell, and therefore from the study of its spectrum, we cannot
find the key to solving a problem specific to a system composed of two or more
electrons. Several phenomena have been observed in such multiple-electron
systems which lead one to think that the interaction between electrons is very
strong, and this has long been a puzzle. Since the electron has a magnetic
moment associated with its spin, two electrons will naturally interact with

78
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each other through the magnetic interaction, but experiments show that the
spin interaction is apparently four or five orders of magnitude larger than one
might expect.

lbe simplest example of this is seen in the spectra of He and alkaline earths.
As I told you in lecture I, the spectral tenns of alkaline earths may be classified
into singlet tenns and triplet tenns, and I repeat in figure 5.2 the levels of Na as
representative of alkali metals and the levels of Mg as representative of alkaline
earths. You should refer to the figure in this lecture.

As I told you in lecture 2, the levels of an alkaline atom are doubled (the S
tenn is an exception) because the spin of the electrons outside the closed shells
is quantized along two directions in the atom. In other words. if we are in the
electron rest system. the nucleus rotates around the electron and thus produces
a magnetic field at the position of the electron (I called this magnetic field in
lecture 2 the internal magnetic field ~b, and therefore the electron spins are
quantized as ± I/2 with respect to this internal magnetic field, and the levels
split into two. In lecture I we considered this splitting using the old model
of the core, and in lecture 2 we abandoned the idea of core and the idea of
electron spin emerged, but I did not talk about the actual relation between the
quantum numberj and spin. With the advent of the new quantum mechanics. the

Figure 5.1 Werner K. Hci<;enberg
(I90I-t976).ICourtesy of AlP
Emilio Scgrt Visuat Archivc:sl
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Figure 5 2 Spectral terms for alkalis (left) and alkaline earths (right).

usage of quantum numbers has changed a little bit, so let me continue talking,
supplementing this point.

First, the shape and size of the orbit are determined by nand e, and corre
sponding to these the orbital energy of the electron is given by

(5-1)

According to the new quantum mechanics, the magnitude of the orbital angular
momentum is e in units of 11. Therefore, we wiIl write the angular momentum
itself as t. Next we consider the electron spin. The spin angular momentum is s,
and its magnitude sis 1/2. The vector s is quantized paraIlel or antiparaIlel to the
internal magnetic field. Now since the direction of the internal magnetic field
coincides with the direction of t, this conclusjon may be rephrased: the spin
vector s is quantized either along the direction of t or opposite to the direction
oft.

Therefore, if I write the total angular momentum of the atom as j, then it is
the sum of t and s

j = t + s,

and the values which} can take are

(5-2)
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. Ie+! if s is oriented along t
J = Ie- 2 if s is oriented opposite to the direction of t.

We assume here that

If e= 0, obviously

81

(5-3)

(5-3')

(5-3")

Fore=1= 0 the vector s is quantized along t or opposite to t as shown in figure 5.3.
Now what happens to the energy of the atom? We have in addition to the

energy of orbital motion (5-1) the energy of interaction between the internal
magnetic field and magnetic moment. Let us write this energy Es,l because it is
the energy due to the interaction between the orbital motion and the spin. This
depends on the shape of the orbit and the direction of s with respect to t and
therefore depends on j: it is a function of n, e, andj

Es.l = Es,l(n, f; j).

Therefore, the total energy of the atom is

(5-4)

(5-5)

If e =1= 0, j takes the two values of (5-3), and Etot becomes a doublet term; if
e= 0, j is only 1/2, so Etot is singlet. This is a supplement to lecture I. Please

s

J

=
i

j=l+1/2

is
=

i

j= 1-1/2

J

Figure 5.3 Doublet terms due to s + l
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look at the Na levels in figure 5.2, and you will see this is the case. The real
form of Es.i is given by the expectation value (H2) of (3-10") in lecture 3, but
I will not write it here because a qualitative discussion suffices.

Next, what happens in the alkaline earths? As seen in the Mg levels of figure
5.2 and as I told you in lecture I, the levels can be classified into two groups; in
one group all levels are singlet, and in the other group all are tnplet except for
e= 0. In lecture I, we named these two classifications of levels singlet terms
and triplet terms.

Now can we understand this phenomenon using t +s as we just did for alkali
metals? About this problem, the following was the accepted theory until 1926.

In alkaline earth atoms, there are two electrons outside the closed shell. In the
Mg levels shown in figure 5.2, one electron occupies the lowest state outside
the shell, and the other electron may occupy a variety of higher states. For
this reason, the level is determined only by the quantum numbers n, eof the
electron in the higher state. In the case of Mg, the shell closes with n = 2, and
therefore the quantum numbers for the lower electron are n = 3, e= 0, and
those for the higher one can be n = 3,4,5, ... , e= 0, 1,2, 3, ... Accordingly
as e= 0, 1,2,3, etc., the levels are named S, P, D, F, etc.

As I explained earlier, the doublet terms of alkalis exist because the spin s
is parallel or antiparallel to the orbital angular momentum t. Now we have the
problem of triplet terms. Is it not possible that there exists a certain angular
momentum not lsi = 1/2 but lsi = I, and that it is azimuthally quantized with
respect to the angular momentum t?

In the core model of lecture I, we considered this s as the angular momentum
of the core. Its identity aside, lsi = I will be azimuthally quantized as sketched

B

o j=f-1j = foo j=f+1

8
A 8 AB

A l + 8

18= =B
l l

l + 8

(1 ) (2) (3)

Figure 5.4 (I) 5 is parallel 10 i, Ii + 51 = e+ I. (2) 5 is aligned such lhal
AO = OB. Ii + 51 = i. (3) 5 is anliparallello i, Ie + 51 = i-I
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in figure 5.4. When the angular momentum t is not 0, in addition to parallel and
antiparallel alignments there is the extra possibility of skew alignment, as you
see in the figure. It is not clearjust to say skew, but from the general requirement
of quantum mechanics that the magnitude of angular momentum must always
be integral or half-integral, its direction is determined. In our case lsi = I, and
we see from figure 5.4 that if we put

then Ijl, namely j, is

t +s =j,

if sand t are parallel
if sand t are askew
if sand t are antiparallel .

(5-6)

(5-7)

Thus there are three orientations of s with respect to t, and from the analogy of
alkali metals, the levels split into three. Ifwe write the energy of the interaction
between spin and orbital motion, we shall have, just like (5-4),

Es.l = Es.l(n, f; j). (5-8)

The only difference from (5-4) is that the value ofj is not given by (5-3) but by
(5-7). (5-7) does not hold for the exceptional case of f = 0, when

j=l. (5-7')

This corresponds to (5-3").
Then what is the angular momentum s for which lsi = I? In the core model

given in lecture I, this was considered to be the angular momentum of the
core, but with the advent of spin, it is superseded by the following theory. In
the case of alkaline earths, there are two electrons outside the closed shell,
and each electron has its own spin, which we write as Sl and S2. Of course,
s\ = lSI 1 = 1/2, and S2 = IS21 = 1/2. We now assume that there is an
interaction between the two spins which is stronger than Es.l. Let us write this
interaction between the spins as

Es.s = Es.s(n, f; s). (5-9)

(We shall soon see that Es.s is a function of s as shown on the right-hand side.)
Because this energy is larger than Es.l, the two spins influence each other more
strongly than they are influenced by t. Therefore Sl and S2 will not be quantized
with respect to t but with respect to each other. Then s\ and S2 must be either
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mutually parallel or antiparallel. Therefore, the magnitude s = lSI + s21 of the
added vector

will be

s _ { I- 0

S = SI +S2

if SI and S2 are parallel
if SI and S2 are antiparallel.

(5-10)

(5-11)

(5-10) gives the S which we just considered. We can consider this to be S because
this S can have a magnitude of I.

Now if we look at (5-11), s = 0 is also possible. In this case, the added vector
S is a zero vector, and the atom behaves as if S does not exist. So in this case
Es.l also does not exist, and the energy levels of the atom will simply be those
of the orbital motion. The levels then naturally are singlet. This argument also
explains the singlet levels of Mg in figure 5.2.

Thus the energy levels of alkaline earths are

Etotal(n, f; s; j) = E(\)(n, f) + Es.s(n, f; s) + E<.l(n, f; s; j). (5-12)

Here s in Es.s takes a value of I or O. Es.l = 0 if s = 0 or f = 0, and when
s = I,j in Es.l takes the three values f + I, f, f - I as in (5-7). Therefore ES.l

takes a different value for each value ofj.
According to this idea, the singlet term of alkaline earths appears when the

two spins are antiparallel, triplet states appear when they are parallel, and the
spectrum can be neatly explained.

Now what is the order of magnitude of the spin-spin interaction Es .s ? We can
answer this from the experimental data given in figure 5.2 by comparing the
levels of the singlet terms and triplet terms. From the formula just obtained,
(5-12), the difference between the energy of a singlet term with a certain n, f
and that of a triplet term with the same n, f is

Es.s(n, f; 0) - Es.s(n, f; I).

Therefore, if we obtain the interval by experiment, we can guess the magnitude
of E s.s . Then we find that the interaction between spins is quite large.

Now the problem is, What is the origin of this large Es.s ?
Certainly there is a magnetic interaction between SI and S2. Since the electron

has a magnetic moment of -e'h/2mc along the direction of spin, there is an
interaction energy between them of the order
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However, such energy of magnetic origin causes a difference between Es.s

(n, l; 0) and Es,s(n, l; I) of only the order of magnitude of splittings seen in
alkali doublet levels. On the contrary, from figure 5.2 we see that the difference
is as big as that of electric origin. This was an enigma for many years. However,
if we assume this large Es.s without understanding its cause, we can explain a
variety ofcomplicated spectra. The answer to this question was found only after
the discovery of the new quantum mechanics, especially the relation between
the particle statistics and the symmetry of the wave function as I told you in the
previous lecture. Let me explain this.

So how do we consider this in the new quantum mechanics? Before going into
this problem, please note that the levels ofMg shown in figure 5.2 are all doubly
degenerate according to the old idea. This is because if we exchange electrons I
and 2 and consider electron 2 to be at the lowest level n = 3, l = 0 and electron
I to be in a variety of n, l states, we get exactly the same energy-level scheme.

Now let us go into the new quantum mechanics. We shall determine the
levels in the following steps. In step (i) we solve the problem of two electrons
without taking the spin degrees of freedom into account. This means we solve
the SchrOdinger equation with respect to the spatial motion of the electrons
and determine its eigenvalues and eigenfunctions. In step (ii) we solve the
SchrOdinger equation for spin separately from the spatial motion and determine
its eigenvalues and eigenfunctions. And finally in step (iii) we consider the
interaction between spatial motion and spin. We shall do it this way. Now
in this process something new appears which was totally unexpected in the
old quantum mechanics. This is the issue which played an important role
in the previous lecture, that is, whether the wave function is symmetric or
antisymmetric with respect to the exchange of particles.

Let us first consider step (i). The problem here is to solve the SchrOdinger
equation

(5-14)

We now assume that we have solved the equation and obtained its eigenvalue
E(I) and its eigensolution 1/!(XI, X2). If we interchange XI and X2, then the
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expression inside braces does not change, but 1/!(XI, X2) becomes 1/!(X2, XI).

Therefore, if 1/!(XI, X2) is an eigenfunction, then 1/!(X2, XI) must also be an
eigenfunction. Furthermore, the latter also corresponds to the eigenvalue E( 1).

Therefore, if the eigenvalue E(I) is not degenerate (this will be shown later),
1/!(X2, XI) must be some constant times 1/!(XI, X2), namely

(5-15)

Now repeating the interchange of XI and X2 produces a condition identical to
noninterchange, and therefore a 2 must be I, which means either

(5-16)s

or

(5-16)a

That is to say, the eigenfunction 1/!(XI, X2) has to be either symmetnc or
antisymmetric with respect to the interchange of XI and X2.

Now how can we assign quantum numbers to the eigenvalues and eigenfunc
tions of (5-14)?

We do it as follows. Namely, we examine how the level E( I) under consid
eration relates to E(O) when the interaction e2/lxl - x21 is adiabatically set to
zero, and we use the quantum numbers of E(O) as the quantum numbers of E( I).

When we set e = 0 in this term of (5-14), we obtain

1[- ~~ f11 + VZ=2(IXII)] + [- ~~ f12 + VZ=2(I X21)]

-E(I)} 1/!(XI, X2) = 0, (5-14')

which can be solved by the method of separation of variables. We can use
the eigenvalues E Z=2(n I, £ I), E Z=2(n2, £2) and the eigenfunctions 1/!n,.ll (XI),

1/!nz.lz (X2) of the one-electron SchrOdinger equation

[- ~~ f11 + VZ=2(lxII) - EZ=2(n\, £()] 1/!n,.l, (XI) = 0 (5-17)1

[ - ~~ f12 + VZ=2(l x21) - E Z=2(n2, £2)] 1/!nz.lz(X2) = 0 (5-17h
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and obtain the eigenvalues and eigenfunctions of (5_14') as

(5-18)

(5-19)

We can specify the quantum numbers n I. fl; n2. f2 for £(1) by observing how
the eigenfunction of (5-14) relates to the eigenvalues and eigenfunctions (with
their own nand e) in (5-18) and (5-19) when (5-14) is adiabatically brought
to (5-14').

Now one problem occurs here. The problem is that although the eigenfunction
of (5-14) has to be either symmetric or antisymmetric with respect to the
interchange of XI and X2. (5-19) is neither symmetric nor anti symmetric unless
nl = n2 and fl = f2. Therefore. the eigenfunction 1/1 of (5-14) cannot be
correlated to (5-19) unless n 1 = n2 and f 1 = f2.

The fact that eigensolutions exist which are neither symmetric nor antisym
metric indicates that the assumption which we used in deriving (5-16)5 and
(5-16)a, namely that the eigenvalues are not degenerate, is not valid. Indeed, if
we interchange electrons I and 2, we obtain instead of (5-18)

(5-18')

but this has a value identical to that of (5-18). On the other hand, for the
eigenfunction we obtain

(5-19')

and this does not agree with (5-19).
However, if we make the linear combinations

(5-20),

and

(5-20h

then 1/1(0) 'ym is symmetric and 1/1(0) ant is antisymmetric, so if 1/I(XI, X2) is sym
metric, it correlates to (5-20)5' and if 1/I(XI. X2) is antisymmetric, it correlates
to (5-20)a, although the eigenfunction of (5-14) is neither (5-19) nor (5-19').
Even in the old quantum mechanics, in general we cannot literally say that
electron I is in the state n I , f I and electron 2 is in n2, f 2 when there is an
interaction between them, but if the interaction goes to 0, we can regard them
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in that way. Now in the new quantum mechanics, we cannot say this even if the
interaction is very small, even 0, and the electron is always in a superposition
of the state with n I, f I; n2, f2 and the state with n2, f2; n I, f I. This concept of
the superposition of states exists only in the new quantum mechanics, and there
was absolutely no such idea in classical mechanics.

So now we see that if we set the interaction to 0, then the state with eigenvalue

(5-20)

is doubly degenerate, and one eigenvalue has eigenfunction (5-20)s and the
other (5-20)a' Now let us consider how this £(0) varies when we introduce
the interaction into the system adiabatically. We can immediately understand
without calculation that 1/I(0)sym of (5-20)s is nonzero when XI = X2, whereas
1/I(0)anl of (5-20)a is always zero when XI = X2. From this we can conclude,
roughly speaking, that the probability of two electrons being close is smaller in
the state 1/Ianl than in the state 1/Isym. Then since there will be a repulsive force
between the two electrons, the energy will be lower if they do not approach
closely. 1/Ianl will have lower energy than 1/1~ym. In this case, the difference of
the two levels has its origin in the electric Coulomb interaction and therefore
should be rather large. Therefore, if we changee in the numerator ofe2/ixi -x21
gradually from 0 to 4.8 x 10-10 esu, then the repulsive potential gradually comes
in, and all levels gradually increase from the values given by (5-20), but at the
same time they split, and the splitting becomes gradually larger with the 1/Ianl
level below the 1/Isym level. We can write the variation of the energy levels due
to the electron repulsion as

for the symmetric state and

(

2 )syme

(

2 )anle

(5-2I)s

(5-2I)a

for the antisymmetric state. Then in general, we can show that the former is
larger than the latter and that the eigenvalues of (5-14) are nondegenerate.

From the foregoing discussion we now know how to assign quantum numbers
nl. fl; n2, f2 to eigenvalues and eigenfunctions of (5-14). We compared which
nl. fl; n2, f2 correlate when e in the numerator of e2/lxl - x21 is set equal
to zero and deduced the symmetry property of 1/1. Here we have to recognize
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that the order of nl, il and n2, i2 is meaningless because both in (5-20)s and in
(5-20)a the order of these is meaningless. Therefore, the eigenvalues of (5-14)
can be written as

(5-22)

and their eigenfunctions as

(5-23)

Now we start comparing with experimental observations; we shall take as an
example the I P and 3 P levels of Mg in figure 5.2. For those, we can set n I = 3,
il = 0 and n2 = n, i2 = 1. This means one of the electrons is in the lowest
state outside the closed shell, and the other electron will be in the P state with
various n values.

I summarize this situation in figure 5.5. As I just told you, I consider only
nl = 3, il = 0, n2 = n, i2 = 1. However, as I told you earlier, the state
in question must be a superposition of nl = 3, il = 0, n2 = n, i2 = I
and n I = n, i I = I, n2 = 3, i2 = O. We first write in the leftmost column
£(0) of (5-20) with n I = 3, i 1 = 0, n2 = n, i2 = I. Since the level can be
specified only by nand i2 = I, I omitted n I = 3, i 1 = O. Namely, instead of
£(0)(3,0, n, I) I simply write £(O)(n. I). Next we take intoaccounte21xI -x21.
Then as we saw near the end of the previous section, the levels split into two, and
as the value of e is increased, the value of the splitting gradually increases with
the antisymmetric level always below the symmetric level. In order to show
whether levels are symmetric or antisymmetric with respect to the interchange
of XI and X2, I labeled them x-sym and x-ant. Just as in the old theory, the
£(0) levels are doubly degenerate, so I drew them as bold lines. However, the
levels £(I)(n, I) split into two, x-sym and x-ant, and are no longer degenerate.
Therefore, I do not use bold lines for the £(1) levels.

Now we go on to step (ii), which is the inclusion of the spin degree of freedom.
As I told you in the third lecture, related to Pauli's spin theory, it is convenient
to use for the spin coordinate in the wave function the z-component Sz. If we
write the spin coordinate of the first electron as Siz and that of the second as
S2z, then we can write the wave function with the spin degrees of freedom as

(5-24)

Although the value of total spin 8 = 81 + 82 is 0 or I in the new quantum
mechanics as in the old quantum mechanics, the new concept that did not exist
in the old quantum mechanics is the idea of the symmetry of 1ft (s Iz' S2z) upon
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interchange of the coordinates Slz and S2z' Please remember the theorem which
I proved in the third lecture. The theorem was that if the magnitude of the total
spin s is S and the corresponding wave function is 1/t~(Slz. S2z). then

). {symmetric if S = I
1/ts(Slz. S2z IS antisymmetric if S = O. (5-24')

(The converse of this theorem is also true.) Unlike in the old theory, we do
not have to consider energies other than the interaction energy between the
magnetic moment of the electrons to consider the energies of 1/t( I) and 1/t(O). If
this is the case, the contribution to the energy level from (5-13) is only on the
order of
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Es,s = (2:J zeXI ~ xzl 3 te,s (5-25)

This is very small both for S = 0 and S = I and is almost negligible. Therefore,
E(Z) (n, I; s) for all practical purposes can be approximated as E(I) (n, I)

regardless of the value of s,
The reason we cited theorem (5-24') is that there is a specific relation between

the particle's statistics and the symmetry of the wave function, which we must
take into account here. Namely, the total wave function, which contains both
spatial and spin coordinates of the electron, is given by the product of a function
with spatial degrees of freedom like (5-23) and a function of spin degrees of
freedom like (5-24'); since the electron is a fermion, this total function must be
antisymmetric with respect to the interchange of XI, Siz and xz, SZz. From this
requirement the following unfolds. By using the same argument with which I
derived (4-9), the total wave functions

and

(I)sym
ljIn e n e (XI, xz) . ljIO(Slz, SZz)

I· I, 2, 2
(5-26)

(5-27)

are both antisymmetric with respect to the interchange of XI, Siz and Xz, SZz,

and these states can actually occur, but

(1)ant
ljIn•.fI,n2,e2 (XI. xz) . ljIO(Slz, szz)

(I)~ym

ljIn I,e 1;n2,e2 (XI, xz) . ljIl (Slz, szz)

(5-26')

(5-27')

are both symmetric with respect to the interchange of XI, Siz and Xz, SZz, and
thus these states cannot exist in reality.

Therefore, when spin degrees of freedom are taken into account, from the
levels in the second column of figure 5.5, only the S = 0 level results from the
x-sym level, and only S = I results from the x-ant level. Therefore if we write
in the third column E(Z)(n, I; 0) and in the fourth column E(Z)(n, I; I), then
since Es,s is very small, the x-sym of E(I)(n, I) moves to the third column, and
x-ant slides to the fourth column.

Finally, we go on to step (iii). Here we incorporate the spin-orbit interaction
energy Es.f to obtain Etotal. The result is just like that as before: the E(Z) level
of S = 0 does not split, but E(Z) of S = I splits into three. We again express the
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states by the notation 0 and DOD. Then we get the columns numbered 3 and 5
in figure 5.5.

For comparison with figure 5.5. I give the procedure of the old quantum
mechanics in figure 5.6. I do not want to go into detail. but in this procedure
the splitting of singlet and triplet appears when Es.s is introduced. Also. in the
old theory all the levels are doubly degenerate. and therefore all of them in
the figure are shown by bold lines. As these two figures indicate. the thoughts
underlying the two level schemes are quite different. In the old theory the
splitting between singlet and triplet occurs first when Es•s is taken into account.
but in the new theory it already appears when we move from E(O) to E( I) through
the contribution of (e2/lxl - x21). In the new theory one of the split levels is
singlet and the other is triplet because the electron is a fermion. In the old theory
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Figure 5.6 Interpretation of spectral terms by old quantum mechanics.
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we had to consider a large spin-spin interaction Es•s , while in the new theory
it is sufficient to consider a small Es•s of magnetic origin. Also as I mentioned
earlier, in the old theory all the levels are doubly degenerate, but not any more
in the new theory. This is because the states given by (5-26') and (5-27') must
be dropped from consideration.

Thus we have answered the puzzle of atomic spectra as to why electron spins
interact with each other on such a large scale, unthinkable for a magnetic inter
action. When Pauli negated the core model and proposed the two-valuedness
of the electron, he left for the future why the alkaline earth spectrum splits into
singlet and triplet and what causes the energy difference; this question has now
been answered as due to the symmetry property of the wave function, which
had not been considered at all at that time.

Here we considered I P terms and 3 P terms, but you can do the same for IS

and 3S terms. You will obtain the conclusion that in 3S terms the n = 3 term
must be dropped. This last conclusion was verified by Pauli using the exclusion
principle, but here we go one step deeper and discover through this exercise
that the reason for the Pauli exclusion principle is the antisymmetric property
of the wave function.

The effect of the apparently large interaction between electron spins is not
limited to spectral term values. In order to explain the ferromagnetism of Fe,
as you may know, P. Weiss proposed long ago that there is a large interac
tion between molecular magnets based on the then-accepted concept of the
molecular magnet. By using this idea Weiss could explain a wide variety of
experimental results related to ferromagnetism. However, the origin of such a
strong interaction between molecular magnets was entirely unknown.

Then there appeared the new interpretation of the spectral terms of alkaline
earths. This new interpretation was given by Heisenberg in 1926; he not
only discovered that the symmetry property of the wave function has a close
connection to a particle's statistics in a many-electron system but also found
that it plays an important role in a variety of problems and for the first
time gave a clear explanation of the spectral terms of two-electron systems.
Furthermore, immediately after this work he applied the same idea to the
problem of ferromagnetism.

I have been talking for some time now so I would not proceed any further on
the problem of ferromagnetism, but ferromagnetism occurs because electron
spins outside all the Fe atomic cores point in the same direction over an entire
macroscopic crystal of Fe. The apparently very strong spin-spin interaction just
discussed plays the role of orienting spins in the same direction. Therefore, the
subtle property of electron spin appears directly in the everyday macroscopic
phenomenon of a magnet attracting iron, and this is related to wholly transcen
dent facts such as the symmetry property of wave functions and the electron
being a fermion. This is one good example of transcendent theory appearing
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directly in ordinary, everyday phenomena. If the reason for ferromagnetism is
the alignment of spins on a macroscopic scale, then not only the total magnetic
moment but also the total spin angular momentum should have a macroscopic
value. If so, in order to satisfy the conservation of angular momentum when
a body magnetizes, the body should acquire an angular momentum opposite
to the total spin angular momentum and should start to rotate, and this rota
tion should be observable. Actually, Einstein and W. J. de Haas had already
demonstrated this experimentally in 1915 and from the rotation had measured
g( ,,,mpo"""""mag""'" momenl.10"g Ihcmag"""dkld ) of Fe. In this experiment they obtained a

cumponent of angular momentum along the magnetic held

value for 8 which is close to I, but later many people did the experiment with
higher accuracy and obtained g = 80 = 2 not only for Fe but also for Ni and
Co. These experiments show clearly that the origin of the magnetization of a
ferromagnetic material is the electron spin.

Let me finally add one thing. After Heisenberg's paper on alkaline earths,
Dirac also published a paper on the apparent spin-spin interaction. In this paper
he derives the spin-spin interaction ingeniously by considering the interchange
of particles (in general, permutation) as a physical quantity, an idea that would
not occur to mortals. I shall not go further into this theory because it is described
in detail in Dirac's textbook.



LECTU RE SIX

Pauli-Weisskopf and the Yukawa Particle

There Is No Reason for Nature to Reject
Particles with Spin Zero

With this lecture I return to the main stream which was previously discussed.
In the third lecture I descnbed "why nature is not satisfied by a simple point
charge." Dirac answered this question. Maybe I am too gossipy, but I suspect
that when Pauli saw Dirac's work, he thought he had been scooped by him. Pauli
himself was trying to incorporate spin into quantum mechanics and introduced
the Pauli matrices, but he could not arrive at the complete theory. He also
clearly recognized the necessity of making the theory relativistic and yet could
not achieve it. He was known to be a perfectionist who severely criticized other
people's work, but he had no alternative other than to publish his unsatisfactory
ad hoc theory. Now on the other hand, Dirac established his theory with totally
unexpected acrobatics and solved all the problems on spin as well as making
the theory relativistic. I do not believe Pauli could have been so ascetic as to
have accepted this graciously.

However, in 1934 Pauli ended up retaliating against Dirac. Pauli showed that
Dirac's argument that nature is satisfied only by the Dirac equation and not by
the Klein-Gordon equation is incorrect. According to him, the Klein-Gordon
equation is not in contradiction with the framework of quantum mechanics, and
there is no reason nature abhors particles with spin O.

I would like to talk today on how this came about, but we need quite a bit of
preparation. The first item is the quantization of the wave field, and the other
is the problem of Dirac's negative energy.

Probably you have had the same experience, but the "wave," when we study
wave mechanics or the wave function 1{!, is discussed sometimes as if it were
a real wave in the three-dimensional space in which we live and sometimes as
if it were an abstract wave in the configuration space. Have you ever worried
as to which is the case? Such confusion with the concept occurred quite a bit

95
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FigUfe6.1 Wolfgang Pauli. 1940
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at lhe beginning of the development ofquantum mechanics. Indeed. if we look
at Schrodinger's series of papers "Quantization as an Eigenvalue Problem,"
we find that SchrOdinger himself was going back and forth between these IwO
ideas. However, by and large he lended 10 Ihink that his l/J was a wave in
three-dimensional space. Forexample, he considered el/J·(x)1/I(x) as lhecharge
density which aclually exists in space and hied 10 lreat the bulk of lhe density
as an electron. This idea, however, did not work because 1/1.1/1 will spread with
time and the density becomes diffuse.

On lhe other hand, when quantum mechanics was compteted in the fonn of
transformation theory, SchrOdinger's 1/1 was established as a represenlation of
lhe slale veclor of lhe mechanical system. It was also called lhe probability
amplitude. which is a function of the generalized coordinates describing the
mechanical system, and therefore the wave expressed by I/t exists in the absiraci
coordinate space and not in our three-dimensional space. Therefore, for two
particles, 1/1 is a function 1/I(XI. X2) of the coordinate XI of Ihe first particle
and (he coordinate X2 of the second particle. and (his is a wave in a six
dimensional space. Furthermore, more generally, the variables which constitute
the argument of 1/1 are not limited to lhe spatial coordinates XI, X2•... but could
be lhe generalized coordinates of Lagrange oreven the more abslract canonical
coordinates of Hamilton's mechanics.
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Therefore, it looks as if SchrOdinger's idea of a wave of real matter seems to
have been completely superseded. The idea that the radiation wave does indeed
exist in our three-dimensional space but the matter wave does not was about to
become orthodox.

However, this situation suddenly changed when the idea of quantization of
the wave field was introduced. Namely, it was established that the concept of
a matter wave actuaIly existing in space is just as valid as that of a light wave
existing in space.

Quantum mechanics was initiaIly developed to study material particles such
as electrons and nuclei. And the phenomena of atoms emitting, absorbing, and
scattering radiation were treated through the analogy with classical mechanics
with the assumption that the matrix elements of the electronic coordinates
correspond to the Fourier components of the classical electron motion; there
was no other recourse than to treat the whole problem by analogy to classical
theory. However, when quantum mechanics was completed in the form of
transformation theory, it was ready to be applied to the radiation field. There
was an attempt to consider a mechanical system that includes atoms as weIl as
a radiation field and to apply quantum mechanics also to the field, treating the
interaction of radiation and matter consistently. It was Dirac who initiated this
attempt in 1927.

The idea of treating the radiation field quantum mechanicaIly was by no
means new. Already at the beginning of quantum theory was Debye's idea that
if you decompose the radiation field into plane waves and make its amplitude
discrete such that it satisfies Planck's condition

N v = 0, 1,2, ... ,

then you can derive Planck's formula. Therefore, instead of simply using
Planck's condition ad hoc, we can reconsider the amplitude of the wave as
a matnx (or Dirac's q-number) and apply the new quantum mechanics. Then
the condition E v = Nvhv will be naturaIly derived, and we can interpret
Nv as the number of photons with energy hv. If we do this, the particle
nature of radiation will automaticaIly emerge. Indeed soon after Heisenberg
devised matrix mechanics, Born, Jordan, and Heisenberg, who completed
matrix mechanics, themselves proposed to consider the electric and magnetic
fields E and H also as matrices (although at that time the idea of probability
amplitude did not yet exist, and they could not apply their idea to the emission,
absorption, and scattering of radiation).

Needless to say, Dirac naturaIly started from the idea of Debye and Born. This
initial step could have been taken by any of us mortals (regardless of whether
we can complete it or not), but Dirac introduced one further idea which is
characteristic of him. It is the weird idea which later carne to be known as
second quantization. I am afraid that I must digress from spin, but this weird
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idea is very typical of Dirac, and with this idea the matter wave is incorporated
into the three-dimensional space, so let me spend some time explaining it.

Dirac first considered the Schrodinger equation for one particle. As you know,
it is

[ H(X, p) + ~~] 1/!(x, t) = 0
I at

I 2 h
H(x,p) = -p + V(x), P = -;-V.

2m I

(6-1)

According to his transformation theory, 1/!(x, t) represents the state vector of
the system at time t. Now we consider some mechanical quantity (in Dirac's
nomenclature, an observable) G(x, p), and let us call its eigenvalue gn and
eigenfunction cf>n (x). Here, n = I, 2, 3, ... Since the cf>n (x) constitute a com
plete, orthogonal system, we can expand 1/!(x, t) as

(6-2)
n

Then ifwe measure the observable G(x, p) at time t, the probability of obtaining
the value gn is

(6-3)

This was a conclusion from the transformation theory. Here 1/! and cf>n are all
normalized to I. H (x, p) represents the energy of the system, and in terms of
the matrix elements of H,

Hn.n, = f cf>~(x)H(x, P)cf>n,(x)dv,

the expectation value of H is given by

(H) = f 1/!*(X, 1)H(x, p)1/!(x, t)dv

= La~Hn.n,an"
n,n'

(6-4)

(6-5)

Here it is easy to see that (H) is independent of time.
Using the matrix element (6-4), we can derive the time dependence of

an(t) as

dan(t) I L
-- = - Hn n,an' (1)

dt ih .
n'

(6-6)
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from (6-1). Its complex conjugate becomes

(6-6)*

If we examine (6-6) and (6-6)*, we see that we can rewrite them using (H)
of (6-5), namely

dan I a(H}
dt = ih aa:; ,

da;

dt

I a(H}
----

ih aan
(6-7)

From these, if we treat an like the coordinate variable and

7rn = iha;

like its conjugate momentum, and consider

(6-8)

(6-9)

as the Hamiltonian, then we can show that an and trn satisfy the canonical
equations of motion

dan a(H}
dt = a7r

n
•

d7rn

dt

a(H}

aan
(6-10)

So far we have considered one mechanical system consisting of one par
ticle, but let us follow Dirac here and consider an ensemble composed of N
mechanical systems each containing one particle. If we do so, the expectation
value of the number of systems in the ensemble which have the value gn for
the observable G at one time is given as N Pn , namely

Therefore, if we set

(6-3')

and (6-11 )

then we get

and if we set, corresponding to (6-8),

(6-3")
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(6-8')

and, corresponding to (6-9),

then we obtain, corresponding to (6-10),

(6-9')

dnn

dt
(6-10')

Ifwe examine (6-10'), here also we can regard An and n n as canonical variables,
which satisfy canonical equations with jj as the Hamiltonian. We have the
relation

L Ian 1
2 = f 1/1* (x, t)1/I(x, t)dv = I

n

for an, while for An,

n

(6-12)

(6-12')

Dirac says that if you worry about the fact that An and nn are complex numbers,
then use Nn and en defined by

A* - N 1/ 2 -jfjn/1r
n - n e . (6-13)

Dirac proved that these Nn and en are canonical variables conjugate to each
other. When we use these variables, the Hamiltonian is

H- - '" N 1/ 2 -jfjn/1r H N 1/ 2 j(~n,/1r- L...J n e n.n' n' e .
n.n'

(6-9")

Here Dirac performed his characteristic acrobatics. Namely, he redefined
these An and n n as quantum mechanical q-numbers rather than as ordinary
numbers. That is, he introduced the canonical commutation relation between
An and n n to quantize the problem,

(6-14)
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Why do I call this acrobatics? After all, the SchrOdinger equation (6-1) is
already the result of quantization. Therefore, all of equations (6-10) and (6-10')
derived from that are already quantized. Why must you quantize it once more
as the name second quantization suggests? We mortals stand bewildered here.
However, there is no use being bewildered, so let us try to discover why we
feel bewildered. We shall find the following.

The quantities which are expressed by q-numbers in quantum mechanics, be
they the coordinate q, the momentum p, the energy H, or the quantity G that we
just discussed, are all observables. The concept of observable was introduced
by Dirac, and these are the quantities which are directly measurable by some
experiments. However, quantities like nn, defined in (6-3), are nothing like
that. In order to determine them, we repeat the measurement of observable
G many times, accumulate a body of data, and then examine which fraction
of measurements give gn. Therefore nn is not a quantity which is directly
measurable by experiment, and therefore it is not an observable. In that sense,
none of an, a;, 1fn are observables.

We can say the same thing about Nn, An, A;, and nn. First of all, when I
said "an ensemble composed ofN mechanical systems each with one particle,"
I meant by ensemble an imagined ensemble, and there is no need to have a real
mechanical system composed of N particles in front of you. We can consider
one mechanical system and repeat the measurement of G many times under the
same conditions and then obtain the number of times Nn in which the value ofG
was measured to be gn. Or we can make the mechanical system number one on
the first day and measure G and destroy the system after the measurement, make
a second mechanical system on the second day and measure the value of G and
destroy that system, make a third mechanical system on the third day, and so on.
Therefore, the ensemble we are considering here is a so-called virtual ensemble
in statistics. When I say number of measurements Nn , it is not a quantity which
itself is obtained by measuring an observable, but it is a number related to the
accumulation of data on many repeated measurements of observables.

The reason why we were bewildered by Dirac's second quantization, which
regards Nn, An, and nn as q-numbers, lies right here. Some of you might accept
the second quantization without any difficulty. Such a person has to be either
as great as Dirac or a happy-go-lucky type who, although he does not consider
anything deeply, feels as if he understands everything.

Then on what basis did Dirac dare to quantize Nn, An, and nn in spite of these
problems? I think the answer is as follows.

We know the fact that the statistical conclusion for virtual ensembles often
agrees with that for real ensembles. Therefore, we may well expect that in
the present problem there may also be such agreement. If so, we can apply
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our conclusion for a "virtual ensemble composed of N mechanical systems
each with one particle" to the "mechanical system of N particles which are
not mutually interacting." Now in this real ensemble we can consider Nn as an
observable because the determination of Nn for a mechanical system composed
of N particles amounts to the measurement of G for particle I, 2, 3, ... ,
N, i.e., G(XI, PI), G(X2, P2), G(X3, P3), ... , G(XN, PN). Here the G of the N
particles all commute, and therefore according to the transformation theory,
we can measure all N of the G's simultaneously and regard it as one set of
measurements. Furthermore, observable Nn is not an analytic function but is a
function ofN observables G (since the value of Nn is determined when the N G
values which mutually commute are measured, Nn is a function ofall the N G's),
and therefore Nn can be determined by one set of measurements. For this reason
we can consider Nn as a q-number in ourreal ensemble and likewise An and nn.

For these reasons, what Dirac did was a heuristic study to find the answer
to the question whether it is possible to describe a many-particle system using
the q-numbers Nn and their conjugates (~n or the q-numbers An and nn, and
for that purpose to use equation (6-10') as the fundamental equation starting
from the Hamiltonian (6-9'). Namely, he is using the second quantization as a
heuristic means to see if such an approach is possible and only in this context.

Since the second quantization is a heuristic logic, we must examine whether
the theory using the Hamiltonian (6-9') or (6-9") indeed agrees with the conclu
sion obtained from the treatment of many-particle systems in the ordinary way.
[In the process of quantizing (6-9"), the order of N~/2 and e±H->n/1J must be
considered, but the right order will be given later in (6-17').) Here by ordinary
way I mean the method of considering 'I/t in coordinate space which for the N
particles gives the Schrodinger equation

[H(X(, PI> + H(X2, P2) + ... + H(XN, PN) + ~ :1]·
'I/t(X(, X2,···, XN) = O. (6-15)

Dirac actually gives in his paper a proof that this agreement does result if
he takes only the solution 'I/t(XI, X2, ... , xn ) which is symmetric with respect
to the interchange of particles. By this procedure it has been demonstrated
that the solution of the problem by using Hamiltonian (6-9') and commutation
relation (6-14) is equivalent to solving (6-15) for an N-boson system with the
Hamiltonian

N

H = L H(xv , Pv).
v=(

(6-16)

Here the probability amplitude that appears when we use Hamiltonian (6-9') or
(6-9") is a function of the type of coordinate used, namely An or Nn
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In particular, the latter is more commonly used, and the SchrOdinger equation
for that case is

[
'" Nl/2e-i<-ln/1IH ,ei<-ln,/1I N

1/2 + '!!..~].
L...J n n.n n' i at
n.n'

1/t(NI. N2 •... , Nn •... ) = O. (6-17')

Dirac showed that the operator e±i<-l/1I in this equation has the property

Actually this proof was not rigorous, but it is very Dirac-like and very interesting
as heuristic theory, so let me introduce it here.

Proof" Since e is the momentum conjugate to N, we can consider it to be
11 a/ iaN when it is applied to a function of N. Then we have

e±i<~/1I = e±d/aN = I ±~ +~~ ±~~ + ....
aN 2! aN2 3! aN3

By Taylor's theorem

1/t(N) ± 1/t'(N) + ;! 1/t"(N) ± ;, 1/t"'(N) + ... = 1/t(N ± 1),

therefore

Q.E.D.

Since the newly discovered theory has now been proved to be correct for
bosons, the use of heuristic theory notwithstanding, there is no reason for us
to hesitate to use it. We can proceed with it with confidence. Therefore we
shall transform the Hamiltonian (6-9'), the equations of motion (6-10'), and the
commutation relation (6-14) together with the relation between An and N (6-12')
so we can use them for further discussions. Remembering (6-2), we define the
"wave function" I/J (x) and its "conjugate momentum function" n (x), which
are q-numbers, by

(6-2')
n

n(x) = L nnif>;(x).
n



104 LECTURE 6

Then we obtain from (6-14) the canonical commutation relations between 1/1 (x)
and n(x)

I/I(x)n(x') - n(x')I/I(x) = i1l 8(x - x')

1/1 (x) 1/1 (x') - 1/1 (x') 1/1 (x) = 0

n(x)n(x') - n(x')n(x) = 0,

and we can derive the equation of motion for 1/1 as

[ H(X, p) + ~~] 1/1 (x, t) = O.
I at

Furthennore, since we see

(6-14')

(6-1 ')

(6-8")

the equation of motion of n (x) is nothing but the complex conjugate of (6-1').
(Since 1/1 is a q-number, we use t instead of* to express the complex conjugate.)
Furthennore, the Hamiltonian (6-9') becomes

ii = i~ f n(x)H(x,p)l/I(x)dv =f I/It(x)H(x,p)l/I(x)dv, (6-5')

and the relation (6-12') becomes

N = f I/I t (x, t)1/I (x, t)dv. (6-12")

This N commutes with ii, and therefore we see it is independent of time.
Now if we look at (6-1 ') just obtained, we see it has a similar fonn to that ofthe

probability amplitude of one particle, and if we look at the Hamiltonian (6-5'),
then we see it has the same fonn as equation (6-5) for the expectation value of
the energy for one particle. We should not forget, however, that although they
are similar in fonn, their meanings are entirely different. Namely, (6-1 ') and
(6-5') are related to the observables of "a mechanical system composed of N
bosons," and both are relations between q-numbers, whereas (6-1) and (6-5) are
related to the probability amplitude and the expectation value ofone particle. We
should note here that neither (6-1'), (6-5'), nor the commutation relation (6-14')
contains the boson number N at all. We therefore can consider those relations as
the fundamental fonnulas for "the mechanical system with an arbitrary number
of bosons." Because of this, the wave function 1/1 (x), unlike the wave 1ft in the
coordinate space, is always a function of x in three-dimensional space, which
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is independent of the number of particles. We therefore can regard the wave
function I/J, which is our q-number, as the wave which actually exists in the
three-dimensional space in which we live. Where does the number of particles
appear then? The answer is in (6-12"). Namely, the number of particles appears
related to the amplitude of I/J .

We now know that the wave field which has the Hamiltonian (6-5') and is
quantized by the commutation relation (6-14') is equivalent to the system of
bosons with the Hamiltonian (6-16). Indeed, if we consider I/J as a q-number
and define An by (6-2'), then the eigenvalues of the q-number Nn , defined by

are

eigenvalues of Nn = O. I, 2, ...•

(6-18)

(6-18')

and therefore we see clearly the particle nature of the field. Furthermore, if we
adopt SchrOdinger's idea that e1/t*(x)1/t(x) is the charge density which actually
exists in space and define the observable

p(x) = el/J(x)tl/J(x), (6-19)

(so far we have been using as electric charge -e, but today I shall use e for the
charge of a particle regardless of the sign) then we see that the eigenvalues of
its integral over arbitrary volume V

Pv = !P(X)dX

v

(6-19')

are 0, Ie, 2e, 3e, ... This shows that our mechanical system has the property
of an assembly of particles with electric charge e. We should note here that
corresponding to the spreading of SchrOdinger's el/J*(x)l/J(x) in time, the
expectation value of el/J t (x)1/J (x) is also blurred with time, and therefore
the expectation value of PV also may take a nonintegral value and gradually
approaches O. However, the eigenvalue of PV will never take values other than
oor positive integers. Therefore, although the expectation values may blur, the
particle nature of electric charge is always conserved.

In this way SchrOdinger's unfulfilled wish, namely not to place the wave 1/t(x)
in the configuration space but to welcome it to the three-dimensional space, has
now been realized by using the quantized I/J (x) rather than 1/t(x). Thus guided
by his heuristic method, Dirac discovered that the field equation satisfied by
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l/I (x) has the same fonn as the equation satisfied by 1/I(x). You should never
forget, however, that even though the fonn of the equations is the same, 1/1 is
the probability amplitude of one particle and is therefore a c-number, whereas
l/I, which describes the wave field, is a q-number, and they are conceptuaIly
entirely different things. Furthennore, as I shaIl teIl you later, the coincidence
of the fonn of the equations is limited only to cases in which the interactions
between particles are neglected; if there are interactions, 1/1 and l/I are not only
conceptually different, but the equations satisfied by them have mathematical
properties which are essentiaIly different from each other. It is often said, "by
the second quantization of 1/1 we obtain l/I ," but this statement is wrong for
this reason. In my opinion, just as there are MaxweIl equations which are not
quantized, it is better to consider that there exist some equations from the
beginning satisfied by nonquantized l/I, and those equations agree with the
equations of 1/1 only when there is no interaction.

Anyhow, it was a great discovery to have found that the mechanical system
with the Hamiltonian (6-5'), i.e., the system of the wave field with equation
(6-1 '), and the mechanical system with Hamiltonian (6-16), i.e., a particle
system composed of N particles, give exactly the same answer if we quantize
the fonner by (6-14') and adopt only the symmetric wave function for the latter.
They are entirely equivalent. It is great because from this we can establish
a Nishida-like theme! in quantum mechanics that says a wave is a particle
and a particle is a wave without any contradiction and obtain its complete
mathematical expression.

Dirac's heuristic study in the fonn I have considered so far does not work
for a real ensemble in which there is an interaction between particles. This
is because in the virtual ensemble, which he used as a starting point, particle
interactions do not play any role. After all, an individual mechanical system
in his virtual ensemble is a system of one particle. Therefore, there is no
interaction in the system. Also, the ensemble is virtual, and we may consider,
for example, that the first system exists on the first day only, the second on
the second day only, the third on the third day only, etc. Therefore, it is
completely meaningless to consider the interaction between particles in two
different systems. Nevertheless, Jordan and Klein have shown that it is possible
to describe a real ensemble of particles which are interacting with each other
through a wave field l/I (x) which actuaIly exists in three-dimensional space
if the particles are bosons. According to them, while so far for V(x) in the
Hamiltonian

I. Kitaro Nishida (1870-1945) was a renowned Japanese philosopher and writer He founded
his own school of philosophy based on the precept that "pure experience" is the sole reality.
His philosophy attempted in his later years to approximate the concept of Mu (nothingness) of
Zen. Tomonaga's father, Sanjuro (1871-1951) was a contemporary professor with Nishida in the
department of philosophy, Kyoto University
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I
H(x, p) = _p2 + V(x) (6-20)

2m

of field equation (6-1 ') we considered only potential energy due to the external
field, but if there is an interaction between particles, for example, Coulomb
repulsion, then we must add to the potential energy V(x) of the external field a
potential energy

f el/lt (X')l/I (x') ,
Vwave(X) = e dv,

Ix-x'i
(6-21)

which is caused by the charge density el/lt(x)l/I(x) of the wave field itself,
and use

v' (x) = v (x) + Vwave(x).

Namely, as a Hamiltonian in (6-1') we use

I 2
H(x, p) = -p + V(x) + Vwave(x)

2m

and the equation

(6-20')

[
_Ip2 + V (x) + ef el/l

t
(x')l/I (x') dv' + ~.!!-] l/I (x, t) = 0 (6-22)

2m Ix - x'i I at

instead of (6-1 '). Jordan and Klein discovered that if we do this, this theory and
the quantum theory of a boson system with the Hamiltonian

N[I ] N 2
H = L -2 p~ + V(x) + L I e I

m Xv - xv'
v=1 v>v'

(6-23)

give results that agree in all respects. It is worth noting that in the second
summation of (6-23) the term with v = v' is excluded. As a result of this, for
the case of one particle, the term involving e2/lxv - xv'l does not appear in
(6-23) even if we use (6-22), in which Vwave(x) is included.

From this work ofJordan and Klein, the difference between l/I and 1ft becomes
even clearer. The field equation (6-22) for l/I has an entirely different form from
(6-1), which gives the probability amplitude of one particle, i.e.,

[
I lla]_p2 + V(x) + -;-- 1ft (x, t) = O.

2m I at (6-22')
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Moreover, this difference is fundamental. The reason is that, according to the
transformation theory, the probability amplitude must satisfy the principle of
superposition, and therefore the equation satisfied by 1ft should always be in
linear form, but (6-22) is not linear with respect to I/J. For this reason even if we
consider that I/J is not a q-number, the field equation (6-22) is of such a nature
that it can never be considered as the equation for 1ft. We now see clearly that
it is entirely incorrect to say, "I/J is obtained by the second quantization of 1ft."

Equation (6-22), although not derivable by heuristic reasoning alone, is a field
equation which takes into account the interaction of particles correctly, and if
I/J is not quantized, it should correspond to the classical Maxwell equation. Do
you ask, Why then is there an 11 on the left-hand side of (6-22)? That is a good
question. It is the sort of question that a happy-go-lucky person cannot ask.
Since you noticed this very good point, try to answer it yourself. (Hint: Replace
in the argument m ~ 11m, v ~ 110, e ~ 1Ie, and I/J ~ .p /-Ifi. Consider the
meaning of these replacements.)

I have already talked for an unintentionally long time about Dirac's acrobatics,
but all he wanted to show was that a system of many bosons and the wave field
in three-dimensional space are equivalent in quantum mechanics. He tried to
apply this conclusion to photons to discuss quantum-mechanically the emission,
absorption, and scattering of photons by atoms. You might think that in order
to apply the argument used so far directly to photons, we need the equation
of probability amplitude of one photon. However, the photon is a relativistic
particle, and we cannot use (6-1) for it. Many people at that time attempted
without success to find a probability amplitude for one photon. (It was shown
later that in the relativistic theory, not only for the case of photons, but in
general, the probability amplitude in the x, y, z space does not exist.) However,
as has now become clear after this long talk, it is the field equation that has to
be quantized and not that of the probability amplitude. Therefore, even if we do
not know the equation of probability amplitude, it suffices just to quantize the
field equation, if it is known. Dirac knew this right from the beginning without
needing this long exposition. He showed that by extending Debye's idea the
correct answer for the absorption and emission of photons and the scattering
of photons by atoms is obtained by quantizing the radiation field. Following
this work of Dirac's, Fermi as well as Heisenberg and Pauli formalized more
completely the interaction between an atom and the electromagnetic field by
considering the electron and the quantized Maxwell field simultaneously. In
particular, in their massive paper titled "On the Quantum Mechanics of the
Wave Field" (1929), Heisenberg and Pauli, unlike Dirac and Fermi, treated the
problem by considering not only the electromagnetic field but also the electron
itself as a quantized field. (In this case, however, quantization cannot be done
by (6-14'), for if so, the electron would be a boson. Then how to quantize
an electron? I shall talk about this shortly.) In other words, in this paper they
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consider the Dirac equation not as the equation for the probability amplitude of
an electron but as the relativistic field equation for the electron.

If we accept these premises, then probably it is all right to adopt as another
possible relativistic field equation the Klein-Gordon equation, which was re
jected by Dirac as an unsuitable equation for probability amplitude. Therefore,
probably it is not that surprising that on one clear day2 it occurred to Pauli
to consider the Klein-Gordon equation and to quantize it with the Maxwell
equations in a similar vein as the Heisenberg-Pauli theory.

Therefore he wrote a paper in 1934, helped by his assistant Victor Weisskopf.
The paper's theme, "Nature has no reason to reject particle of spin zero," is the
subtitle of my lecture today. Now we really head for the crux of the matter, but
before doing that, let me finish the aforementioned problem, namely how to
quantize the electron field.

Thus far I have told you that the particle which appears from the quantization
of the wave field is a boson, but we would also like to know if we can treat
a fermion like the electron by the method of field quantization. It was the
work by Jordan and Wigner which appeared in 1928, one year before the
work of Heisenberg am' Pauli, which answered this question. Their answer
was affirmative. Howev ;r, we cannot, of course, use the commutation relation
(6-14'), but instead we nust use the relation in which the minus sign on the
left-hand side of (6-14 ) is replaced by a plus sign.

I/J(x)n(x') + n(x')I/J(x) = i1z8(x - x')

l/J(x)I/J(x') + l/J(x')I/J(x) = 0

n(x)n(x') + n(x')n(x) = o.
(6-14')+

They discovered these relations, which are called anticommutation relations.
When these relations exist, the eigenvalues of the observable Nn defined by
(6-18) are

eigenvalues of Nn = 0, I, (6-18')+

and therefore either 0 or I of this particle can exist in the state n, and thus Pauli's
exclusion principle is clearly satisfied. Furthermore, it is possible to prove that
the wave field thus quantized is completely equivalent in all respects to the
solution in which only the antisymmetric wave function of the particle system
with the Hamiltonian (6-16) or (6-23) is adopted, Le., a system of fermions.
Therefore the theme which I told you earlier ala Nishida's philosophy works
for both bosons and fermions.

2. Tomonaga uses the phrase Un bel di from the aria of Madame Butterfly.
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Now we will go into the story of Pauli and Weisskopf, which is the main
theme of this lecture. Since I had to lay the groundwork by delving into the
huge problem of wave equals particle and particle equals wave, I have nearly
run out of time. However, because of this long preparation you probably have
understood the background for Pauli and Weisskopf's work, so let me just give
you their results.

As I told you earlier, Pauli and Weisskopf tried to quantize the Klein
Gordon equation together with the Maxwell equations using (6-14'). They
were able to do so without any inconsistencies, and from the Klein-Gordon
field they obtained bosons of mass m and spin 0, and very interestingly they
found that the electric charge of this boson can take +e or -e, Le., be either
positive or negative. Moreover, not only was this possible, but they also found
through calculation that when there exists a photon whose h v is larger than
2mc2 , then its absorption can create a pair of particles with +e and -e, and
conversely, if there is a +e/ - e pair, then they can be annihilated by emitting
hv > 2mc2

.

Furthennore, Pauli and Weisskopf objected to regarding the Dirac equation
as the equation of relativistic probability amplitude of one electron although
it is first order. According to them, the Dirac equation is also the relativistic
field equation for the electron and it cannot be considered to be an equation
of probability amplitude in x, y, z space. They insisted that a concept like
"the probability of a particle to be at x in space" is meaningless for relativistic
particles-be they electrons, photons, or Klein-Gordon particles-and therefore
it is meaningless to interpret 1ft (x) as the probability amplitude.

One basis for this last declaration is that, if we consider the Dirac equation
to be the equation of probability amplitude of an electron, then there appears
the peculiar state in which the electron has a negative energy, and the positive
energy electron will fall into the negative-energy state by emitting energy as
a result of interaction with the electromagnetic field. If this can happen, many
peculiar phenomena which contradict reality will follow. In order to cope with
this difficulty, around 1930 Dirac introduced the hypothesis that the vacuum
is the state in which all the negative-energy levels are occupied by electrons.
Then because of the Pauli principle, the positive-energy electrons cannot fall
into negative energy. In Pauli's opinion, if all the negative-energy levels are
filled by so many electrons, there will be an infinite number of electrons, and
that is already way beyond the one-body problem.

For these reasons Pauli deemed that, just as in the Heisenberg-Pauli paper, we
should treat the Dirac equation as a field equation rather than as an equation for
probability amplitude. Dirac, apparently, did not care for Pauli taking Dirac's
equation as the field equation and proposed in his new theoretical fonnulation of
the many-electron problem published in 1932, which later came to be called the
many-time theory, to use the probability amplitude 1ft in the coordinate system
[however, in order to make 1ft relativistic we extend the concept of coordinates
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in the wave function by assigning a different time for each electron, hence
1/!(x(, t(, X2. t2, X3, t3, ... )].

Now the other side of the story is that Dirac himself was starting to anticipate
from his hypothesis of filling the negative-energy levels that in addition to the
usual electron, i.e., an electron with negative charge, there exists an electron
with positive charge, just as bosons of +e and -e appear from quantizing
the Klein-Gordon field. His idea was that if the filling of negative-energy
levels is incomplete and an electron is missing from some negative-energy
level, then that "hole" has a positive energy and behaves as if it has a positive
charge. (Dirac's idea is that lack of negative must mean positive.) Therefore, a
hole would look like an electron with positive charge. (Initially, Dirac thought
that this hole was a proton. However, Oppenheimer raised the criticism that
according to this idea, the hole would be immediately filled by a nearby electron
and the hydrogen atom could not exist stably. Furthermore, it was pointed out
by the mathematician Hermann Weyl that this hole should behave as if it had
the same mass as an electron.)

According to this idea, if there is a photon withhv > 2mc2, then an electron in
a negative-energy level is excited to a positive-energy level, absorbing energy,
and as a result an electron with positive energy and a hole in a negative level-in
other words, a positive-energy, positive-charge electron-are created. By the
way, this positively charged electron was discovered experimentally in 1932
by Carl Anderson and was named positron.

I told you that both positively and negatively charged particles can appear
when the Klein-Gordon equation is quantized. However, Dirac already pointed
out in his 1928 paper, which I talked about in lecture 3, that even without
quantization the equation has one solution which behaves like a particle with
negative charge and one which behaves like a particle with positive charge. (I
shall discuss this further in the next lecture.) He gave this as one of the reasons
for insisting that the electron cannot be described by this equation. (At that time
only electrons with negative charge were believed to exist.)

However, after the discovery of the positron, not only did this reason become
groundless but it also became apparent that both bosons related to the Klein
Gordon equation and fermions related to the Dirac equation have a very
similar property in that they have positive and negative charge, and from these
resemblances it became quite natural to believe that both the Klein-Gordon
equation and the Dirac equation have equally good raison d'etre. For these
reasons Pauli confidently pushed for the resurrection ofthe Klein-Gordon field.
Furthermore, if you quantize the Dirac equation in the manner of Heisenberg
and Pauli, then it is possible with some ingenuity to incorporate positrons and
pair creation into the theory without any artificial postulates such as filling the
negative-energy levels and holes. Because ofthese points, Pauli thought it much
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more natural to regard the Dirac equation as the field equation rather than as
the equation of probability amplitude as Dirac preferred.

Thus Pauli and Weisskopf reinstated the Klein-Gordon equation, which Dirac
had rejected. It seems Pauli was quite euphoric about this work, and a part of
the paper sounds as if he is teasing Dirac by using exactly the phrase which
Dirac had used in his other paper. Freely translated, it reads as follows.

"The most interesting part of our theory is that the energy is always positive
automatically (namely, without using a superfluous hypothesis such as hole
theory). After witnessing that the relativistic scalar theory (the theory of the
Klein-Gordon field) can be constructed without any such hypothesis, one might
wonder why nature had made no use of the possibility from the theory that
there exist spin-zero bosons with charge ±e and the possibility that they can
be created from hv or annihilated, emitting hv." The italicized phrase is taken
directly from the paper in which Dirac predicted the existence of a certain
particle (magnetic monopole). It seems to me that the tone of this sentence and
that of Dirac's sentence (which I quoted in lecture 3) in the beginning of his
paper on the Dirac equation are nearly identical.

This sentence sounds as if Pauli wanted to say that there exist charged
particles with spin 0, but when we read on we find on the contrary that he
sounds as if he is looking for some reason why such a particle cannot be found.
However, when Pauli was writing this paper in 1934, the new idea of the meson
was already taking shape in Yukawa's mind, and the relativistic scalar theory
(more accurately, pseudoscalar theory) would playa big role in the theory of
mesons. Therefore, nature indeed did use this possibility in the appearance of
1T mesons.

All the same, Pauli and Weisskopf's work and Yukawa's idea of the meson
appeared one after the other with incredible timing. The history of physics can
sometimes be very theatrical.



LECTURE SEVEN

The Quantity Which Is Neither Vector
nor Tensor

The Discovery of the Spinor Family and
the Astonishment of Physicists

In the previous lecture we proceeded up to 1934, but as I told you, we were led
up to Pauli and Weisskopf's work by a chain of discoveries starting in 1927.
Among them one of the central issues was the discovery that we can regard the
matter wave as a wave in three-dimensional space. There is one more interesting
development, however, between 1927 and 1930, and since it relates to spin, we
must delve into it. Therefore, let me return once again to 1927-1928.

In lecture 3 I discussed the attempt to incorporate spin into the framework of
quantum mechanics, and how from this attempt the Pauli equation was found
in 1927 and the Dirac equation in 1928. In these equations two-component
quantities and four-component quantities were used, and, for example, in Pauli's
equation 1/1 had the form

1/1 = (1/11 (x, y, z, 1)).
1/I2(X, y, z, t)

(7-1 )

We have written the components 1/11 and 1/12 as a column vector because this
form is convenient for multiplication with the 2 x 2 spin matrices. The problem
arising from this formalism is to find the transformation property of these
multicomponent quantities.

Multicomponent quantities have frequently been used in physics since the
old days. For example, in mechanics or electrodynamics vectors and tensors
which have three and nine components, respectively, have been used. Especially
in electrodynamics, the electric and magnetic fields are field quantities, and
unlike the velocity or acceleration of a mass point in mechanics, they are
point functions and therefore functions of x, y, z (and t). In that sense they
are very similar to (7-1). In addition to these multicomponent quantities,

113
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single-component quantities such as mass. charge. and potential have also been
used in physics and are called scalars.

The vectors and tensors which we have been discussing are in the three
dimensional world. but as you know. when relativity appeared. the rour
dimensional Minkowski world in which time is ranked alongside me space
variables became the arena or physicists. Accordingly. many quantities became
rour-dimensional vectors or four-dimensional tensors. and tensor algebra was
round to be extremely powerful in relativity theory. However. because of the
limitation of lime. we shall not explore the four-dimensional world today.

Now the problem thrust upon us by the discovery orthe Pauli equation was. To
which or the categories or scalar. vector. or tensor in three-dimensional space
does the two-component quantity (7-1) belong? In order to answer this question.
it is necessary to remember the definitions or vector and tensor and why physics
needed them.
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There are a variety of ways to define vector and tensor; however, the most
suitable for today's discussion is to define them as covariant quantities with
respect to transformations of the space coordinates. If we use this concept of
covariance, then we get a good hint as to the significance of vectors and tensors
in physics and the properties of two-component quantities such as (7-1).

Therefore, let us begin by reviewing the definitions of vector and tensor. Let
us take an arbitrary point P in three-dimensional space. We consider an arbitrary
orthogonal coordinate system R and let the coordinates of P in this system
be Xj(j = 1,2,3). We then consider another coordinate system R' which is
obtained by rotating the coordinate axes of system R around the origin. Let the
coordinates of point P in the R' system be x~ (k = 1,2,3). Then you know
there are relations

3

X~ = LAkjXj

j=1

k = 1,2,3 (7-2)

between Xj and x~. Here, the nine coefficients Akj are the direction cosines
between the coordinate axes of the R system and those of the R' system, and
therefore the matrix composed of Akj

(7-3)

is orthogonal. Therefore by solving (7-2) we get

3

Xj = LX~Akj
k=1

J=I,2,3. (7-2')

Furthermore, since the R' system is obtained from the R system by a rotation,
if the R system is a right-handed system, then the R' system is, too, and in such
a case

det A = +1. (7-4)

As I told you, Akj are direction cosines, and therefore if we consider orthogonal
matrices with det A = ± I, then the rotation from the R system to the R'

system is determined uniquely and vice versa. Therefore, there is a one-to-one
correspondence between the rotation of coordinate systems and matrices A, and
we can call that rotation "rotation A."

Next, if we go from the R system to the R' system by rotation A and then go
from the R' system to the R" system by rotation B, then there is a relation
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3

X~ = LCejXj,
j=1

f = 1,2,3, (7-5)

between the coordinates of P in the R system (written Xj) and those in the R"
system (written x~), and the matrix of Cej

(

ClI
C = C21

C31

is the product of the matrices A and B,

(7-6)

C= B·A. (7-7)

We describe this fact by saying that "performing rotation A and then rotation B
on the result is equal to performing rotation B . A."

I have given a long introduction, but now let us define vectors. Let us consider
a three-component quantity

(7-8)

When the coordinate system R is rotated to R' by A and if the components
aI, a2, a3 transform in the same way as (7-2), that is

3

ak = L Akjaj.
j=1

k = 1,2,3, (7-9)

then we call the three-component quantity (7-8) a vector. This is the definition
of vector. From this definition it also holds that

3

aj = LakAkj.
k=1

(7-9')

According to this definition, the three-component quantity (XI, X2, X3) which
determines the position of a mass point is obviously a vector.

Now tensors are defined as follows. Let there be a nine-component quantity

(

a ll

a21
a31

(7-10)
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(Although I arranged the a's in square form, I remind you this is not a matrix.)
Since it is cumbersome to write the whole square each time, we shall write

J=1.2,3; k=I,2,3 (7-11 )

instead of (7-10). Sometimes we will even omit J = I, 2, 3; k = I, 2, 3.
When we have such a nine-component quantity whose components ajk are

transformed according to

3 3

a~m = L L Aej Amkajk
j=1 k=1

(7-12)

when the coordinate system is transformed from R to R' by the rotation A, then
we call this (ajk) a second-rank tensor. The coefficients AejAmk are written

and we define the 9 x 9 matrix

(7-13)

l,m = 1,2,3; J,k = 1,2,3. (7-14)

(Here in the parentheses are nine rows corresponding to l, m = 1,2,3 and
nine columns corresponding to J, k = 1,2,3.) Using this matrix, we can write
(7-12) in the form

3

a~m = L Aem.jkajk;

j.k=\

we can also write

3

ajk = L a~mAem.jk.
e.m=\

These are the relations corresponding to (7-9) and (7-9') for vectors.
In mathematics we define

Aej Bmk = Cem.jk

(7-15)

(7-15')

(7-16)

from the two matnces A = (Aej) and B = (Bmd, and the matrix composed of
these
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C = (Cim.jd

we call the "direct product of A and B" and write

C = A x B.

(7-17)

(7-16')

If I use this terminology, the A (2) of (7-14) is said to be the direct product of A

and A, namely the square

A(2) = A x A. (7-18)

Therefore we may say, "A second-rank tensor is a quantity whose components
are transformed by A (2) = A x A, corresponding to the rotation A of the
coordinate system."

In this way the definitions of third-rank tensor, fourth-rank tensor, etc.,
are automatically clear. Namely, a third-rank tensor is a quantity with 33

components that are transformed by

A(3) = A x A x A.

According to this definition, we can consider a vector as a quantity that
transforms as A(1) = A, corresponding to the rotation A of the coordinate
system, and in this sense we sometimes call a vector a first-rank tensor. We
could also say a scalar is a quantity which is transformed by A (0) = I and call
it a zeroth-rank tensor. According to this definition, it is not sufficient to say
that a scalar is a quantity with one component, but it must be a quantity which
does not change its value in any coordinate system.

From these definitions we can immediately derive the following. First, re
gardless of the rank of a tensor, the transformation of the components of the
tensor and the rotation of the coordinates always have a one-to-one correspon
dence. Therefore, if there are rotations of the coordinate system A, B, and C,
then to each of them corresponds a transformation matrix of tensor components
A (n), B(n), c(n). Furthermore, we can prove that if C = B . A, then there exists
a relation between matrices A (n), B(n), c(n)

For these reasons, not only is there a one-to-one relation between the rotation of
coordinate systems and the transformation matrix of tensor components of arbi
trary rank, but there also is a correspondence product to product. The existence
of this type of correspondence is expressed by saying that the transformation of
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tensor components and the rotation ofcoordinate systems are covariant. In this
sense we call vectors and tensors covariant quantities. Since you probably know
group theory, I mention in passing that A (n) is the 3n -dimensional representation
of the rotation group, and a tensor of nth rank is a quantity with 3n components
which are transformed by A (n) •

We shall not now go into the variety of operations which is used in the
theory of vectors and tensors. Among these operations are the addition of
vectors, the product of vectors, and the contraction of tensors. All of them
make vectors or scalars from vectors, or vectors from tensors or vectors, or
scalars from tensors, etc., and they all make covariant quantities from covariant
quantities. Operations that transform covariant quantities into anything other
than covariant quantities are useless in physics.

So why are only covariant quantities useful in physics? Let me explain
using an example. I told you the coordinate (XI, X2, X3) which represents
the position of a mass point is indeed a vector. Then the three-component
quantity (x I , X2, X3), which is called velocity, and the three-component quantity
(XI, X2, X3), which is called acceleration, are surely vectors as we see if we
differentiate both sides of (7-2) with respect to time. Now we know that
the three-component quantities force and acceleration are related through the
simultaneous equations

mXI =/1 (7-19)

Here m is the mass, and it is a constant specific to the mass point under
consideration. Now we know from Newton's laws there is a fundamental
postulate that the physical space is isotropic, and the laws of physics should
not change regardless of the orientation of the orthogonal coordinate system
used. Therefore, the simultaneous equations (7-19) should hold in the same
form for any coordinate system. As I told you, (XI, X2, X3) on the left-hand
side of (7-19) is a vector, and it transforms according to (7-9) when we move
from the R system to the R' system. Then since m is a constant specific to
the mass point (accordingly, a scalar), the right-hand side (/1,12, /3) must
also transform according to (7-9). For if this were not the case, the system
of simultaneous equations (7-19) would take a different form in the R' sys
tem. When the simultaneous equations between the components of physical
quantities take the same form in any coordinate system as in this example,
we say, "the equations are covariant" (or we may also say "the equations are
invariant").

Perhaps this example is too simple, but the situation is the same even for more
complicated laws of physics. Even when complicated and abstract physical
quantities appear in a law, in order for the physical law to be confirmed
experimentally there must be something like force acting on the needle of a
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meter somewhere in the equations expressing the law. Thus the complicated
relations ofphysical quantities can be untangled strand by strand, and eventually
only relations among covariant quantities appear in the physical laws. For this
reason we can say that all equations in physics must be in covariant form.

Now let me here add two snake's legs (redundant comments) because they
relate to our discussion later. One concerns quantities such as potential or
electromagnetic field, which are, respectively, scalar or vector functions of
Xl, X2, X3. If we take a simple case, e.g., potential, the question is, If it is

(7-20)

in the R system, what would it be in the R' system? The answer is that the
potential in the R' system is ¢(x;. xl' x~), defined by

(7-20')

This is because since the potential is a scalar, its value at point P must be the
same in whichever system we use. Indeed if we use (7-2') in the right-hand side
of (7-20'), then

(7-21 )

We must note that although the values of ¢ on the left-hand side and of ¢ on
the right-hand side are equal, the functional forms of¢ and ¢ are different.

In a similar way a vector in the R system

is transformed in the R' system and becomes

Here the function Ej is defined by

j = 1,2,3

k = I, 2, 3.

(7-22)

(7-22')

We can regard the transformation (7-22') as if we transform the components
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Ej(xl, x2, X3) with (7-20'), regarding them as mutually independent scalars,
and then use (7-9) to remind ourselves that they are components of a vector.

In the discussion above, the independent variables for a function without a bar
are always XI, X2, X3, and those for a function with a bar are always x;, x;, x;.
Therefore, from now on we do not write the variables when we use the unbarred
and barred functions.

I would also like to point out that when a scalar or a vector is a function of
XI, X2, X3, then certain kinds of differential operators can be regarded as scalars
or tensors. For example, the well known 'V == (a/aX), a/aX2, a/aX3) can be
regarded as a vector. The meaning of that is that if we "multiply" them to a
scalar cP

then the relations

(7-24)

k = 1,2,3 (7-24')

hold. Namely, in the sense that if we operate 'V on a scalar, we obtain a vector,
and therefore we consider 'V itself as a vector. For the same reason the familiar
1:1 == ('V . 'V) can be regarded as a scalar because if we operate on cP, we obtain

All these things were known by 1910-1911. We now jump to 1927-1928 and
discuss the Pauli equation.

First let us remember the Pauli theory, which we described in lecture 3. I told
you that Pauli used the matrices

<11 = (~ ~) <13 = (~ ~I) (7-26)

to formulate his theory. He assumed that the components of spin angular
momentum measured in units of 11 are (1) /2, <12/2, <13/2, and correspondingly
the components of the electron spin magnetic moment measured in units of the
Bohr magneton are

j = 1,2,3. (7-27)
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He derived

{ HO + Hs + ~ ~} 1ft = 0,
t at (7-28)

as the SchrOdinger equation satisfied by the two-component quantity 1ft = (~~)
from (7-1). Here the Hamiltonians Ho and Hs are

1 "2 Ze
2

eh"Ho = - L..J Pk - - + - L..J Hkfk
2m k r 2me k

eh " 1 eh "P.Hs = -- L..J HkUk + --- L..JNkUk.
2me k 22me k

(7-29)0

(7-29)s

Ho is the part which is independent of spin, and Hs is the part which depends
on spin. H = (HI, H2, H3) is the external magnetic field, l = (f I, f2, (3) is the
orbital angular momentum, and U/2 = (UI /2, U2/2, U3/2) is the spin angular
momentum. The third term of Ho is the interaction energy between H and the
orbital magnetic moment, and the first term in Hs is the interaction energy
between H and the spin magnetic moment. if = (HI, H2, H3) in the second
term of Hs is the "internal magnetic field," which was discussed in lecture 3
(from Biot-Savart's law if = (I/me) (Ze/r3 ) hi, and the term represents the
interaction energy of if and the spin magnetic moment. The 1/2 in this term is
the Thomas factor, which we discussed in lecture 3. [Please remember (3-8),
(3-10), and (3-10').]

Now let us examine how the Pauli equation (7-28) changes when the coor
dinate system is varied. In other words we consider the coordinate system in
which (7-28) is written and try to transform the formula to the R' system. Let
us first look at Ho. The three terms in the expression are all scalars. This part
of the Hamiltonian, therefore, is transformed to

(7-29')0

in the R' system. Here Ho is notjust a number, but it is an operator on the function
1ft (x I , X2, X3); therefore, although it is a scalar, we do not have H~ = Ho but

H~ 1ft = Ho1ft, (7-30)0

analogous to (7-25). If this relation holds, then as far as the Hamiltonian Ho is
concerned, the form of the Pauli equation in the R' system is identical to that
in the R system.
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Now what happens to Hs? First we combine the two terms of Hs and write

(7-29)5

Here V = (VI, V2, V3) is a vector obtained from the combination of H and fl.
Now let us transform the coordinate system from R to R'. Since Hs is a scalar
product of V and u, Hs is a scalar, and therefore H's must have the "same form"
as (7-29)5

Here of course

H's = L Viu~.
k

(7-29')5

Therefore, we also have

k = 1,2,3. (7-31)

(7-30)s

However, unlike the case of Ho, there is no guarantee that the equation for a
two-component quantity is in covariant form because of (7-30k The reason
for this is that the definition of covariant form states that when the simultaneous
equations of components are written, we obtain the same formula for any
coordinate system. If UI, U2, U3 in Hs were ordinary numbers, then just as
in Ho there would be no problem, but in reality they are matrices, and while
UI, U2, U3 are given by (7-26), u{, u~, u~ are

k = 1,2,3, (7-26')

as is evident from (7-31), and therefore the two components for Hs1ft and the
two components for H's 1ft take completely different forms. In order for them
to be of the same form, H's must be H~ = Lk ViUk rather than Lk Viu,," [See
(7-40) and (7-40'), which will be discussed later.]

How can we overcome this difficulty? We note the following point. So far
in transforming from the R system to the R' system, we have been treating the
two components 1ft1 and 1ft2 of 1ft as mutually independent scalars. Is this not
equivalent to simply applying only the transformation (7-22') and forgetting
about the subsequent transformation (7-23) in transforming the vector (7-22)?
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If this is the case, the two-component quantity to be used in R' should not be

(~~) itself but something like (~l), which is obtained by a transformation of the

form

2

lii'p = L VpaVra fJ = 1,2.
a=1

(7-32)

Isn't this why the forms of the equations did not agree between the R system
and the R' system?

Pauli has shown that indeed this is the case. He first noted that 0"\, 0"2, 0"3 of
(7-26) and 0";, 0"2' O"~ of (7-26') are related by using a unitary matrix,

, V-I V0"\ = 0"\ , V-I V
0"3 = 0"3· (7-33)

Perhaps you know this already, but the definition of a unitary matrix is as
follows. When we interchange the rows and columns of a matrix V = (Vpa)

and take the complex conjugate to obtain vt = (U:p), then if there is the

relation between V and vt

VtV = vvt = I, (7-34)

we call this matrix unitary. We shall not give the proof of (7-33) here, but it is a
natural conclusion from a fundamental theorem used in transformation theory.
I just point out the following, namely, that V is a matrix related to the rotation
A from the R system to the R' system, but it is independent of x \ , X2, X3, t.

So we use (7-33) in the right-hand side of (7-29')5. We then obtain

From this we immediately obtain

and using (7-30)5 for the left-hand side and applying V to both sides, we obtain

(7-35)
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Therefore, if we introduce the two-component quantity lii' by

lii' == U lii,

then we obtain the relation

(Note that the left-hand side is not Lk V{uk.)
So far we have been considering only Hs, but let us show that

HOlii' = U Ho1ft·

(7-36)

(7-37)5

(7-37)0

As I told you earlier, U is independent of XI, X2, X3, and therefore U commutes

with both Ho and Ho' Therefore, we can rewrite the relation U Ho 1ft = U Ho1ft,

which was obtained by applying U to (7-30)0, as HoU 1ft = U Ho1ft. Then we
can use for U 1ft the left-hand side of (7-36), and we immediately get (7-30)0.

Therefore, (7-37)0 is valid in addition to (7-37)5' and adding them, we obtain

( Ho +~ V{Uk) lii = U(Ho + Hs)1ft· (7-37)

Now we are ready to discuss the SchrOdinger equation. First, it is obvious

that

(
, ", 11 a) -, (' " ' )-, 11 a -Ho + L...J VkUk + -;- - 1ft = Ho + L...J VkUk 1ft + -;- - U 1ft. (7-37')

k I at k I at

We write the first term on the right-hand side as U(Ho + Hs)1ft according to

(7-37). Next, the second term can be written as U(1I/i)alii/at) because U is

independent of t, and then from (7-21) it becomes U(1I/i)a1ft/at. Therefore,

we derive for the right-hand side

right-hand side of (7-37') = U (HO +L VkUk + ~~) 1ft.
k I at

Now since the SchrOdinger equation is
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(7-38)

for the R system. the right-hand side of (7-37') for R' is also 0, and we finally
have

(
, ", 11 a)-,Ho+~ VkUk + -;- - 1{t = O.

k 1 at

Now if we write everything down.

(7-38')

(7-39)

and therefore using the first of these formulas in (7-38) and using (7-26) for
UI, U2, U3, we obtain the simultaneous equations

(7-40)

as the SchrOdinger equation for the system R. On the other hand, since in (7-38')
the second term in parentheses is Lk Viuk rather than Lk Viui. we get from
the second formula of (7-39) precisely the same formulas

1
H' -;;;, v'-;;;' v' 'v' -;;;, 11 alii; 00'1'1 + 3 '1'1 + ( 1 -I 2) '1'2 + -;-- =

I at
- - - 11 a-;;;2'

H' ,1,' + (V' + 'v') ,1,' v' ,1,' + 'I' - 00'1'2 I I 2 '1'2 - 3 '1'2 i---at - .

(7-40')

Therefore the situation is identical to that of the Newtonian equation (7-19).
and the equations are invariant. independent of the coordinate system.

For these reasons, if we write the unitary matrix in (7-36) as

U= (UII
U21

and use these Upa as Upa of (7-32), then we can obtain what we want.

(7-41 )
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Furthennore since from (7-34)

we can solve (7-32) and obtain

ViI )
V* ,

22

2

Vtex = L VI;Ppex
P=I

Ci = 1,2. (7-32')

Also, remembering (7-21), we can rewrite (7-32) and (7-32') as

2

Vip = L VpaVta
a=1

2

Vta = L VI'pVpa
p=1

fJ = 1,2

Ci = 1,2

(7-42)

(7-42')

After this procedure we now know that a law of physics can be written in the
same fonn in any system if we transfonn the components of Vt by (7-42) and
(7-42') upon transfonnation of the coordinate system. This transfonnation is
different from the transfonnation of vectors (7-9) and (7-9') not only in that
there are two components, but also in that it is a unitary transfonnation and not
an orthogonal transfonnation. However, there is a more fundamental difference
between V and A. Our two components also covary with the rotation A in some
sense, but there is a remarkable difference between the way they covary and
the way vectors and tensors covary. So let us examine this point using the little
time remaining.

Our V is defined by (7-33), and since u;, u~, u3in (7-26') contain Ajk. V is
also related to Ajk. Therefore, if we change A, V also changes. But it should be
noted that even if A is given, V is not uniquely detennined by (7-33). Namely,
if V is a unitary matrix satisfying (7-33), then ei8 V, in which an arbitrary phase
factor ei8 is multiplied to V, is also a unitary matrix satisfying (7-33). Therefore,
in order to eliminate this multivaluedness of V, we use the following method.
First we obtain I det VI 2 = I from (7-34); we can always make

det V = I (7-43)

by properly choosing ei8 . So let us impose this condition on V and try to limit
its multivaluedness. Since in quantum mechanics the wave function Vt itself
has the uncertainty of a phase factor, we do not have to worry about loss of
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generality by imposing condition (7-43). However, even if we impose condition
(7-43), there still remains a two-valuedness in V. For if V satisfies (7-43), -V

also satisfies (7-43). For these reasons, given Ajk. two values ±V are allowed
for V, and we can use either of them for our purpose.

Superficially, you might think that wejusttake one ofthe two V's and abandon
the other. For example, A = I means no rotation of the coordinate system, and
for this obviously Uj' = Uj, and therefore V = ± I. Then we just assume that
it is +I. If we then change the value of A continuously, you might think that V
varies from +I continuously and is uniquely determined for arbitrary A.

In order to examine this situation, we might investigate the rotation of the
coordinates around only the third axis because you probably do not want to
bother with complicated mathematics.

Let us just consider the R' system, which results from rotating the R system
by an angle a around the third axis. Then the rotation matnx A is

(

cosa
A(a) = - s~n a

and therefore u;, u~, u~ of (7-26') are

sin a
cosa

o
(7-44)

. -ia)-Ie

o

and after a bit of a calculation, we find that the V which satisfies (7-33) and
(7-43) and becomes + I for a = 0 is given by

(
eia/2

V(a) = 0 (7-46)

If we look at this V, we can point out the following two things:
(I) When we apply the rotation A (2rr) then in spite of the fact that A (2rr) =

A(O), V(2rr) "1= V(O), but V(2rr) = -V(O).
(II) If we specify V after the rotation A(al) as V(a() and that for A(a2) as

V(a2), then when we apply A(a2)· A(a(), V is not necessarily V(a2)·
V(a(), but in some cases when al +a2 takes a value between 2rr and 4rr,
it is -V(a2) . V (al).

From these facts we see that it is impossible to drop one of the ±V pair
and make the correspondence between A and V one-to-one. Furthermore, the
correspondence product to product does not always hold either. For these
reasons we cannot consider the components Vtl and Vt2 of the two-component
quantity Vt as covariant quantities in the same sense as the components ofvectors
and tensors, and we cannot consider V as a representation of the rotation group
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in the previous sense. However, as is evident from (I) and (II), the discrepancy
is in sign only, and it appears as though we can overcome it if we slightly extend
the concept of covariant quantities and group representations.

Indeed it is possible to mathematically incorporate this V into representation
theory as a "two-valued representation of the rotation group," and it was
done by Hermann Weyl. Also physically, no difficulty emerges from this two
valuedness. This is because in quantum mechanics, only quantities of the form
11ft12 have physical meaning rather than 1ft itself. Therefore, even if 1ft itself
becomes -1ft after the rotation of 2rr, 11ft 12 goes back to its original value, and
the two-valuedness of 1ft never appears in physical conclusions. Therefore, 1ft
is fully qualified to be considered a covariant quantity.

We derived the two-valuedness for the especially simple rotation (7-44), but
we can obtain the same conclusion for a general A, and this two-valuedness is the
intrinsic point which discriminates (~~) from vectors and tensors. Until Pauli's
theory came along, such a two-valued covariant quantity had never appeared
in physics. The reason for this, I think, is that before quantum mechanics,
all the covariant quantities appearing in physics were in principle themselves
measurable. If so, we surely have a problem with a quantity that changes sign
after a 2rr rotation of the coordinate axes.

We now understand that a covariant quantity with two-valuedness plays a
role in the theory, but the coordinate transformation considered so far is the
usual rotation in three-dimensional space. It was found, however, that the
covariant quantity thus formed is also a two-valued covariant quantity for
the Lorentz transformation in Minkowski space (without having to increase
the number of components). However, in this case, although det V = 1, V
is not unitary for the transformation related to the time coordinate. For this
reason, in addition to the two-component quantity which is transformed by
V, we must take into account the two-component quantity which transforms
by (V-I)t, and in order to discriminate these two we often write the former

1
(1{12) and the latter (~I), and if we use these, we can write Dirac's equation as

1{1 ~2 1
simultaneous equations for (;2) and (:1).

These new quantities which are n6w welcomed as members of the clan
of covariant quantities were christened spinors by Ehrenfest. We can also
define second-rank spinors, third-rank spinors, and so on, and at the request
of Ehrenfest, the mathematician B. L. van der Waerden developed a system of
spinor algebra as opposed to tensor algebra. A remarkable thing is that spinors
with even rank do not have the two-valuedness, and as a result we can use spinors
with even rank to compose vectors and tensors. In this sense (1{1~) and (:1) are
sometimes called half-vectors, and these half-vectors are the mJst fundarriental
covariant quantities from which all other covariant quantities can be composed.

For a long time-a really long time-no physicists had ever imagined that
this type of covariant quantity existed. Darwin, whose name I mentioned in
lecture 3, wrote a paper immediately after Dirac's in which he described his
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failure in an attempt to put the Dirac equation in tensor form and wrote, "It
is rather disconcerting to find that apparently something has slipped through
the net, so that physical quantities exist which would be [to say the least] very
artificial and inconvenient to express as tensors."

Also Ehrenfest in his small paper written in 1932 wrote as follows. (The
original is in German, and I translate it for you for whom German is not a strong
point.) "In all measure it is truly strange that absolutely no one proposed until the
work of Pauli ... and Dirac, which is twenty years after special relativity ... ,
this eerie report that a mysterious tribe by the name of spinor family inhabits
isotropic [three-dimensional] space or Einstein-Minkowski [four-dimensional]
world."

Today's talk was rather mathematical, and I am sorry there were so many
mathematical formulas. After all, our opponent was "the mysterious tribe"
which no one had caught "in the twenty years after relativity had been born."
Therefore, I had no choice other than to talk in this "eerie" way. Today I am
really tired.



LECTURE EIGHT

Spin and Statistics of Elementary Particles

The Spins of Bosons Are Integers and Those of
Fermions Are Half-integers

Pauli and Weisskopf's work on the possibility of spin zero particles, Dirac's
hole theory, and the ensuing discovery of the positron in 1932 were deeply
related in various senses; 1932 was a big year in which a spectacular avalanche
of discoveries was made. For example, the neutron was also discovered in this
year by J. Chadwick. And this discovery of the neutron sparked Heisenberg's
theory that nuclei are composed of protons and neutrons. His proposal, namely
that protons and neutrons are transformed from one to the other by exchanging
an electric charge, led to Fermi's theory of ~-decay, and from these two ideas
Yukawa's theory of mesons was born. In 1936 C. Anderson and S. H. Nedder
meyer experimentally discovered a particle that resembled Yukawa's particle. I

For these reasons from around 1932 to 1936, physicists' ideas about the
structure of matter changed tremendously. Namely, the world of elementary
particles turned out to be much more diverse than had been considered before
1932. Until then the only elementary particles which had been considered were
the proton, the electron, and the photon, but to these the positron, neutron, and
meson were now added. Furthermore, although experimentally not yet proven to
exist, particles like the neutrino and the graviton seemed theoretically possible.
Therefore, it was unimaginable what other elementary particles might be found.
This change of thought on elementary particles came about around 1936.

If the world of elementary particles is indeed so diverse, something like a
central pillar or axis is required which connects all the complicated relations
and straightens out the logical structure. Pauli's theory on the relation between
the spin and statistics of elementary particles emerged from this background.
In this theory, published in 1940, Pauli derived, as our subtitle says, that the
only particles with integral values of spin are bosons, and the only ones with

I. Actually this was a jL meson which is a decay product of Yukawa's 7r meson.
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half-integral spin are fermions. The starting point of this idea was none other
than the Pauli-Weisskopftheory, and therefore their paper was notjustofpassing
significance as a retaliation against Dirac but also very actively directed the
development of physics thereafter.

Today I would like to talk about this work of Pauli's. To begin, let us take the
Klein-Gordon particle as a representative of particles with integral spin and
the Dirac particle as a representative of particles with half-integral spin. If you
remember lecture 6, when we quantize the field, a particle appropriate to the
field appears, and the field can be quantized in two ways. One of them is

and the other

lJI(x)n(x') - n(x')l/!(x) = ih 8(x - x')

l/!(x)n(x') + n(x')l/!(x) = ih 8(x - x').

(8-1)_

(8-1)+

You must remember that a boson appears when (8-1)_ is used and a fermion
appears when (8-1)+ is used. Therefore, Pauli showed first that it is impossible
to quantize the Klein-Gordon field with (8-1)+ and the Dirac field with (8-1)_.

Now let us start from the Klein-Gordon field, for which the field equation is

[( ha)2 3 (h a )2 ]--;-- - L -:-- - m2c2 l/!(x, t) = O.
IC at I aXrr=1

(8-2)

[We do not treat the case where more than one field coexist today. Therefore
the electromagnetic potential Ao, A does not appear in (8-2).] Around 1926
27, before the Dirac equation hit the scene, when people were not yet certain
whether IJI is a wave in configuration space or in three-dimensional space,
many already thought that (8-2) was the relativistic field equation for an electron
wave (and therefore leaned toward the three-dimensional idea) and discussed its
structure. These people (who included not only Klein and Gordon but of course
SchrOdinger, who favored using the three-dimensional picture) engaged in the
work of applying to this equation the general method for field theory which
had been established in the theory of relativity. That is to say, they started
from the Lagrangian of the field, derived the field equation, and determined
the energy-momentum tensor for the matter field. If the electromagnetic field
is incorporated into this procedure, which we are not doing today, the mutual
interaction between the matter field and the electromagnetic field is determined,
and the electric current vector associated with the matter field is obtained.
Furthermore, it is possible to derive the canonical variables for the field (in the
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sense of Hamilton) from the Lagrangian although this was not done at that time
because it was not very necessary.

According to these studies, the energy density (which is the time-time
component of the energy-momentum tensor) of the Klein-Gordon field is

and the charge density is the time component of the electric current vector,
given by

Here K in (8-3) is

mcK=---,;.

(8-4)

(8-3')

It was further found that if we consider l/J and 1/1* as canonical coordinates, the
momenta nand n* conjugate to them are

(8-5)

(Let me remind you that for the time being the field is not quantized.)
Now let us examine what the results obtained mean. The first conclusion

from (8-3) is that the right-hand side of H is a sum of terms of the form I ... e
and therefore is always positive, namely, energy is always positive. On the other
hand, we can conclude that the charge density may be positive or negative. For
if l/J is one of the solutions of (8-2), then obviously l/J * also satisfies (8-2), and
therefore the expression (8-4) in which l/J is replaced by 1/1* [for 1/1* we use
(l/J*)* = l/J] is also a possible charge density; if p is a possible density, then
-p also is a possible density. Thus we obtain the conclusion that p could be
either positive or negative. [I told you two lectures back that Dirac disliked this
point that the electric charge may be positive or negative, and he used exactly
this argument to expose this "fault" of (8-2).]

What happens for the Dirac equation? As given in lecture 3, the Dirac
equation is

[(- ~ ~) - tar (~~) - aomc] l/J(x, t) = O. (8-6)
IC at r=1 I aXr
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For the four matrices ao, ar Dirac used

o,-e 0 0

D02~O
0 0

-D0 I 0
- 0 I 0 -i 0

I 0 0 0 0 (8-7)

03~ G
0 I 0) (I 0 0

j)0 0 -I 0 I 0
0 0 ~ ao = ~ 0 -I

-I 0 0 0

as I told you earlier.
For the Dirac equation also we can apply the standard method of relativity

using the Lagrangian. According to this, the energy density of the field is

H = ~ ~ (1/1* 01/1 _ 01/1* 1/1)
2 i ot at '

and the charge density is

p = -el/l*I/I,

(8-8)

(8-9)

where the charge of the electron is taken as -e. Furthermore, the canonical
momentum n conjugate to 1/1 is given by

n = illl/l*. (8-10)

[Unlike in (8-5), we cannot consider 1/1* and 1/1 as independent coordinates, for
1/1* is already a momentum conjugate to 1/1 as shown in (8-10).]

Now what happens to the sign of Hand p? Let us first change i into -i in
(8-6). Then that equation becomes

[(~~) - ta* (-~~) -aomc] I/I*(x,t) =0.
IC ot r I oXrr=1

Here a* is a matrix in which i in the matrix elements of a is changed to -i. If
we now look at (8-7), it is only a2 whose elements contain i. Therefore, we can
rewrite this formula as

- ~(-~~) - L ar (~~) + a2 (~~) +aome] l/I*(x, t) = O.
IC ot I oXr I OX2

r=1.3

(8-6)*
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The expression inside the brackets of (8-6)* is different from that inside the
brackets of (8-6). Therefore, unlike the case of the Klein-Gordon equation, lJI*
is not a solution of the Dirac equation. However, if we introduce the matrix

C=(~
-I

then we can derive from (8-7) that

o 0
o I
I 0
o 0

~I)
o '
o

(8-11)

Therefore, if we multiply this C to the left-hand side of the brackets of (8-6)*
and move C to the right-hand side of the brackets using (8-11 '), then we obtain

[(-~~) -tar (~~) -aomc] ClJI*(x,t) =0.
IC at I aXr

r=]

(8-6) C

From this we obtain the conclusion that "if lJI is a solution of (8-6), then ClJI*
is also a solution of (8-6)."

We can now use this conclusion for examining the signs of Hand p. First, if
we write (8-8) using the components lJIa(a = 1,2,3,0), note

H = ~!!." (lJI*alJla _ alJl; lJI )
2 i L..J a at at a ,

a

and use Lp Cap lJI; for lJIa and Lp C;p IJIp for IJI; in this expression, then since

Lp C;pCa'P = Daa', we immediately obtain

H",-+C"'* = -H. (8-12)

Therefore, we obtain the conclusion that if H is a possible energy density, then
- H is also a possible energy density, and therefore energy could be either
positive or negative. As for p, since lJI*lJI = La lJI;lJIa is always positive
for any lJI, p always has the same sign as -e. It was this latter property which
convinced Dirac that this equation is suitable for describing an electron because
he was working before the discovery of the positron. However, he faced the
dilemma that H could be either positive or negative. By the way, when the field
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is complex in character, the transformation which makes from a solution l/J of
a field equation another solution which is its complex conjugate (Le., l/J* for
the Klein-Gordon equation and Cl/J* for the Dirac equation) is called "charge
conjugation." This transformation would later playa great role in elementary
particle physics.

In summary, so far we have obtained "complementary" conclusions that

for a Klein-Gordon field

(i) energy is always positive

(ii) electric charge may be positive or negative;

for a Dirac field

(i) electric charge is always a positive multiple of -e

(ii) energy can be positive or negative.

(8-13)

So far we have not quantized the field. First we must consider exactly how
we want to do it. As I told you earlier, there are two methods of quantization,
one for bosons and the other for fermions. What we must consider is which
quantization to carry out for the Klein-Gordon field and which for the Dirac
field. As I told you two lectures ago, Dirac resorted to Pauli's exclusion
principle to avoid the difficulty of negative energy. Therefore, we obtain only
nonsensical results if we use the quantization of bosons for the Dirac field.
On the other hand, Pauli and Weisskopf pointed out that quantizing the Klein
Gordon field using the bosonic commutation relation does not introduce any
inconsistency but using the fermionic commutation relation does. Therefore,
in summary,

for a Klein-Gordon field

(i) bosonic commutation relation is OK

(ii) fermionic commutation relation is no good;

for a Dirac field

(i) fermionic commutation relation is OK

(ii) bosonic commutation relation is no good,

(8-14)

and these relations are also "complementary."
We omit the proof of (8-14) here because we shall talk later about the work

in which Pauli showed that in general
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for a tensor field

(i) bosonic commutation relation is OK

(ii) fermionic commutation relation is no good;

for a spinor field

(i) fermionic commutation relation is OK

(ii) bosonic commutation relation is no good.

Also, as for the generalization of (8-13), Le.,

for a tensor field

(i) energy is always positive

(ii) electric charge may be positive or negative;

for a spinor field

(i) electric charge is always a positive multiple of -e

(ii) energy can be positive or negative,

(8-14')

(8-13')

Pauli proved that (ii) are always valid. His assistant M. Fierz discussed state
ments (i), and according to him, they are not generally true but are valid for spins
of 0, 1/2, and I. For now, we shall postpone our consideration of quantization
and start to discuss how these conclusions were derived.

Pauli derived relations (8-13') from very general considerations, actually from
only three assumptions:

(a) the quantity representing the field is either a tensor or a spinor;
(b) the field equation is a covariant, linear, homogeneous, differential equa

tion in (x, y, z, ct);
(c) the general solution of this equation can be expressed by a superposition

of plane waves ei(k.x-ckof), where ko = ±Jk2 + K 2•

As seen below, his conclusion is more general than (8-13').
Now let me introduce to you Pauli's idea for when the field quantity is a

tensor. We first classify the tensors U into those of even rank and those of odd
rank, and write the general even-rank tensor as U e and the general odd-rank
tensor as Uo. If we discuss individual even-rank tensors rather than general
ones, we shall write Uf, U2' ... with a superscript "e". Likewise, individual
odd-rank tensors will be Uf, Uf, ... These U can be either real or complex,
and in the latter case usually U and U* together are used to describe the field,
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but we do not have to assume that. Next, we write a product of two tensors as
V x V. (A direct product to which a constant is multiplied or which is contracted,
symmetrized, or antisymmetrized an arbitrary number of times is summarily
called a product.) Then the product of two even-rank tensors is always of even
rank, and the product of two odd-rank tensors is always of even rank, and
the product of an odd- and an even-rank tensor is always of odd rank. So
we write

V e X VO = Vo. (8-15)

Next remember that the differential operator

(8-16)

can be considered to be a vector. I put a superscript ° on V because the vector
is an odd-rank tensor. We can then make all sorts of tensorlike differential
operators by VO x VO, VO x VO x VO, ... , and we denote these tensors in general
as D. We then have from (8-15), VO = DO, VO x VO = De, VO x VO x VO =
DO, ... Also, for De and DO operating on an arbitrary tensor we have

So far we have not considered the field equation, and therefore (8-15) and
(8-16') are valid for any V. What will happen if we consider the field equation?
There is no further assumption necessary other than that the equation satisfy (b)
and (c). For example, we do not have to assume that the field must be described
by a single tensor, nor must we assume that the equation is first-order. (Pauli
may have had Dirac in mind when he deliberately says that it does not have to
be first-order.) So we assume that the field is described by M quantities V e 

Vf, V2' ... ,V;" - and N quantities VO - Vf, V2' ... ,VN.Then the field
equations must be a system of M + N simultaneous differential equations, but
since they have to satisfy the covanance requirement (b), each of the equations
based on (8-16') must be of the form

M N

L D~V;' = L D~V~,
m=1 n=]

M N

L D~V;' = LD~V~.
m=1 n=1

(8-17)

Furthermore, since because of assumption (c) the solutions are of the form

Ve = fJe (K)ei(k.x-ckol)
m m '

V~ = fJ~(K)ei(k.x-ckot), (8-18)
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by substituting these into (8-17),

M N

L K~U~(K) = L K~U~(K),
m=! n=)

M N

L K::'U~(K) = L D~U~(K)
m=1 n=)

(8-17')

are derived. I wrote in (8-18) U;, (K) or U~(K) in order explicitly to show that
they are the amplitudes of the plane waves having the propagation vector

(8-19)

In (8-17'), K;, and K~ are both even-rank tensors formed from vector (8-19)
by K x K, K x K x K x K, ... , and K:i, and K~ are odd-rank tensors formed
from K, K x K x K, ... In general, K e is an even function of kx, ky, kz, ko
(i.e., a function which does not change value by kx ~ -kx , ky ~ -ky , kz ~

-kz, ko ~ -ko), and KO is an odd function (a function whose sign changes).
For the collection or class of amplitudes U;, (K)(m = I, 2, ... , M) and

U~(K)(n = 1,2, ... , N) we have M + N simultaneous algebraic equations
of the form (8-17'). We can obtain the possible class of amplitudes by solving
the equations, but in general there will be more than one solution, and therefore
there must be more than one class of plane waves that satisfy the field equation.
(In this case, for a certain class ko = +Jk2 + k2 > 0, and for other classes
ko = -Jk2 + k2 < 0.) From the facts pointed out earlier that Ke is an even
function of k and ko and that KO is an odd function, we obtain the following
important conclusion.

Let us assume that we have obtained a class of solutions U;,(K)(m =
1,2, ... , M) and U~(K)(n = 1,2, ... , N), where K is the value of the
propagation vector. Then the class of U;,( -K) and U~(-K), given by

U~(-K) = U~(K), U~( - K) = -U~(K), (8-20)

is also a class of solutions for the propagation vector - K. This is easily seen
if we replace K in (8-17') with - K and use (8-20). If the original plane wave
(8-18) belonged to the class with ko > 0 (or ko < 0), then the plane waves of
(8-20), namely

U~ (K)ei [(-k).x-c(-ko)l l , _U~(K)ei[(-k).x-c(-kO)11 (8-18')

belong to the class of ko < 0 (or ko > 0). In this sense (8-20) means the
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transformation from classes with ko > 0 to classes with ko < 0 or from classes
with ko < 0 to classes with ko > O. Here since (8-20) is symmetric with respect
to K and - K. there is a one-to-one correspondence between the members of
classes in this transformation (therefore the classes with ko > 0 and the classes
with ko < 0 are equal in number). Pauli expressed this transformation by the
notation

K~-K, (8-21)

So far, we have discussed plane-wave solutions. but from assumption (c) we
can produce a general solution by their superposition. First. we take a linear
combination of plane waves (8-18) using arbitrary coefficients a(k) for each
class and make a wave packet

m = 1.2, ...• MlJI~ (x, t) = L u:;' (K)a (k)ei(k.x-ckol) •

k

lJI~(x. t) = L U~(K)a(k)ei(k.x-ckol), n = 1.2, ... , N.

k

(8-22)

[Here a (k) may be different for different classes.] We next sum the wave packets
formed for each class over all the classes. Then the wave packet given by the
sum

U:;'(x, t) = L lJI~(x, t), m = 1,2•... , M
class

U~(x. t) = L lJI~(x, t). n = 1,2.... , N,
class

(8-23)

is the general solution.
In preparation for later discussion, I mention the following. First we form

(8-18') from (8-18) by a Pauli transformation. Then since (8-18') satisfies the
field equation. the wave packet

lJI'~(X, t) = L U:;'(K)a(k)ei[(-k).x-c(-ko)/)

k

lJI'~(X. t) = - L U~(K)a(k)ei[(-k).x-c(-ko)/l

k

(8-22')

also satisfies the field equation. and therefore the wave packet formed from
them,
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V':(x, t) = L t/I':(x, t)

class

V'~(x, t) = L t/I'~(x, t)

class

141

(8-23')

satisfies the field equation. We also call this transformation which produces V'
from V a Pauli transformation.

Now in relativistic field theory, covariant quadratic forms or bilinear forms
composed from the quantities of the field and their derivatives play important
roles. The energy-momentum tensor is a good example. Also if the matter field
interacts with an electromagnetic field, then the electric current vector is also
an example. As I told you at the beginning, the energy-momentum tensor is a
second-rank tensor, and its time-time component gives the energy density, and
the electric current vector is a first-rank tensor, and its time component gives
the electric charge density Let us examine how much can be concluded from
the very general discus'lOn just given on the properties of the first-rank and
second-rank tensors cor .posed from the quantities V:;' and V~, which describe
the field, and their deriv Hives.

Let us start from the ;irst-rank tensor. A first-rank tensor is an odd-rank tensor,
and therefore according to (8-15) it must be of the form V e x Vo. We then use
(8-16'), but let us notice first that since the argument from now on is only for
the distinction of whether the tensor is even or odd, De in (8-16') does not play
any role. That is to say we can see from (8-16') that De operating on V e or VO
does not change the parity of V e or VO at all. Therefore, if we are considering
only the parity of V, then all De can be summarily represented by 1. Using the
same argument, if the problem is only the parity of V, all DO can be summarily
represented by Vo. In this sense, let us write (8-16') as

IVe = V e ,

IVo = VO,

VoVo = V e

VoVe = Vo.

(8-16")

If we do this, the two equations on the left are trivial, and it is not necessary to
write them down.

After this remark, we come back to the story of first-rank tensors (or in
general, odd-rank tensors). As mentioned earlier, they are ofthe form ve x VO,
and according to (8-16"), they are one of V e x VO V e, VO VO x VO, or V e X Vo.
Since the order of multiplication does not affect the parity, we omit the "x"
and simply write them as VeVoVe, VOVOVO, VeVo. Then the most general
form of the first-rank tensor that can be generated from V e and VO or their
derivatives is
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(8-24)

We then use (8-23) for Ve and V O on the right-hand side. We obtain

s = L L (L tJt::' V°tJt::', + L tJt:V°tJtn~ + L tJt::' tJtn~). (8-25)
class class' m.m' n.n' m.n'

Here the meaning of Lclass' Lclass' is self-explanatory, but I might just remind
you that on the right-hand side tJt;, and tJt: belong to the same class, and so do
tJt::" and tJt:', but tJt;, and tJt::" (likewise tJt: and tJt:,) mayor may not belong to
the same class.

Now let us finally discuss the sign of S. In order to do this, we calculate S
using (8-22) and (8-22'), and compare the results. First if we denote

U~(K)a(k) == A~(K),

and calculate S using (8-22), we obtain

U~(K)a(k) == A~(K) (8-26)

S(x, t) = L L' [A~(K)K'A~,(K')+ A~(K)K'A~,(K') + A~(K)A~,(K')]

x e;[(k+k').x-c(ko+k~)tl, (8-27)

but when (8-22') is used, S' is

S(x, t) = - L L' [A~(K)K'A~,(K')+ A~(K)K'A~,(K') + A~(K)A~,(K')]

x e;[(-k-k').x-c(-ko-k~)tl. (8-27')

Here L is a combination of Lclass' Lm (or Ln)' and Lk' and L' is a
combination of Lclass" Lm' (or Ln')' and Lk" If we note

;[(-k-k').x-c(-ko-k' )t] ;[(k+k')-( -x)-c(ko+k' )(-I)Je 0 =e 0 ,

we derive the following conclusion from (8-27) and (8-27'). It is, "If the value
of S at x, t using the wave packet (8-23) is positive (or negative), the value of S
at -x, -t using the wave packet (8-23') is negative (or positive)." This leads to
the compelling conclusion that in the case of a tensor field, S cannot take only
positive values or only negative values.

This conclusion was derived for the first-rank tensor, and it naturally applies
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to the electric current vector as a special case. Thus we can conclude that the
charge density in a tensor field may have either sign.

What happens to the energy-momentum tensor? This is a case of a second
rank tensor, whose most general form is

(8-28)

Following an argument analogous to that for S,

T(x, t) = L L' [A~(K)A~/(K')+ A~(K)A~/(K') + A~(K)K'A~/(K')]

x eil(k+k/).x-c(ko+k~)IJ. (8-29)

and

T'(x, t) = L L' [A~(K)A~/(K')+ A~(K)A~/(K') + A~(K)K'A~/(K')]

x eil(k+k'H-x)-c(ko+k~)(-t)J, (8-29')

are obtained, leading to the conclusion that "the value of T at (x, t) using the
wave packet (8-23), and the value of Tat (-x, -t) using the wave packet (8
23') are equal to one another." We cannot conclude, however, that T is always
positive, but at least such a possibility is not excluded.

Next, what would happen in the case of a spinor field? Unfortunately, we do
not have enough time to examine this situation thoroughly, nor have we covered
in sufficient detail the spinor algebra needed for this argument. Therefore please
bear with me for just giving the conclusion. We find that in the spinor field, T
is not of definite sign. As for S, we cannot conclude that S is always positive,
but at least the possibility is not excluded. From this we find that in the spinor
field the energy density can be either positive or negative and its space integral,
namely energy, can also be positive or negative.

This was Pauli's argument in deriving (ii) of(8-13'). Earlier, we derived (8-13)
for the Klein-Gordon field and the Dirac field using the charge conjugation
transformation. The characteristic of Pauli's general argument is that it does not
use this transformation but instead uses the Pauli transformation (8-21). As a
result of this, Pauli's conclusion about the electric current vector is applicable in
general to all odd-rank tensors, and his conclusion about the energy-momentum
tensor applies to all even-rank tensors and to scalar fields. It cannot be deduced
that T for the tensor field and S for the spinor field are always positive from
Pauli's argument alone. Indeed as I mentioned earlier, Fierz showed that it is
valid only when the spin is 0, 1/2, or 1. Nevertheless, it is very instructive to
realize that such a profound conclusion can be derived only from the assumption
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that "physical quantities must be covariant quantities," and in the process tensor
and spinor algebra demonstrate their power.

We now move on to field quantization. You will see that the concept of
covariance plays a role here, also. However in this discussion, the usual fonn of
the commutator (or anticommutator) presents a knotty problem. For example,
if you look at (8-1 )_, we have on the left-hand side tJt (x) and n (x'), but these
mean tJt and n at different positions but at the same instant in time, so strictly
they should be written tJt(x, t), n (x', t). Such a different treatment of the space
variable and the time variable is not relativistic, and therefore we cannot draw
any conclusion using the covariance of four-dimensional space. Therefore, we
must find for our discussions a commutation relation which relates the field at
different positions and times, namely, in the fonn of

tJt(x, t)n(x/, t' ) - n(x/, t')tJt(x, t) = F(x - x', t - t' ).

And the left- and right-hand sides of this equation should be covariant.
Does such an F indeed exist? And if it does, what are its properties? The

simplest Klein-Gordon field must give a hint. Therefore let us try that.
First let us point out that the canonical commutation relations for the Klein

Gordon field are obtained by substituting (8-5) into (6-14'):

atJtt(x/, t) atJtt(x' t) i
tJt(x, t) , tJt(x, t) = -8(x - X')

at at h
t atJt(x/, t) atJt(x/, t) ti,

tJt (x, t) - tJt (x, t) = -8(x - x )
at at h

(8-30)

(Since tJt is a q-number, we use tJtt instead of tJt*.) In addition to these, there
are relations in which tJt and tJt t , atJt/at and atJt t fat, atJt/at and tJt, and
atJt t fat and tJtt all commute. As I said earlier, one unsatisfactory point of
these commutation relations is that t in tJt and t in tJtt are the same values, but
note that since (8-30) and its additional relations are known, we can calculate
from them the relations for commutators of the type

using the fact that tJt and tJtt change with time satisfying (8-2). Namely, if for
example we put

tJt(x, t)tJtt(x/, t' ) - tJtt(x/, t')tJt(x, t) == ~.1(X - x', t - t' ), (8-31)

then we see
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(I) since tJt(x, t) on the left-hand side satisfies the Klein-Gordon equation,
Ll(x - x', t - t') on the right-hand side must also satisfy the equation;

(II) since tJt and tJtt commute at t = t', Ll(x - x', t - t') on the right-hand
side is zero at t' = t;

(III) because of (8-30), for t' = t, we see aLl(x - x', t - t')/atlt'=t =
o(x - x').

Therefore, the function Ll(x - x', t - t') may be obtained by solving the Klein
Gordon equation using (II) and (III) as initial conditions. Then Ll is uniquely
determined.

For our purpose it is not necessary to write down the functional form of Ll
explicitly. Here we just point out the following three properties of Ll obtained
in this way:

(A) Ll is a real-valued function ofx2 - e2t 2 ;

(B) Ll(x - x', t - t') is symmetric with respect to interchange of the space
variables x and x' and antisymmetric with respect to interchange of the
time variables t and t'; and

(C) Ll(x - x', t - t') is zero in the region -Ix - x'i < e(t - t') < Ix - xl
Furthermore, since the left-hand side of (8-31) is a scalar, Ll is also a scalar,

but from (A) we can conclude that Ll is not just a scalar but an invariant scalar
function. Here by an invariant scalar function I mean a function !(x, y, z, eO
which satisfies not simply

!(x, y, z, et) = !(x', y', z', et')

when the Lorentz transformation

x, y, z, et ~ x', y', z', et'

is made, but one for which the functional forms of! and! are identical. [The
meaning of the notation! was given in the previous lecture. See (7-20').] We
now see that the right-hand side of the commutation relation (8-31) has the
identical form in any systems that are related by Lorentz transformations. This
last remark is essential. If Ll has different forms in different Lorentz systems,
then the requirement that all Lorentz systems be equivalent will not be satisfied.

In addition to the commutation relation (8-31), we can derive

tJt(x, t)tJt(x', t') - tJt(x', t')tJt(x, t) = 0

tJtt (x, t)tJt t (x', t') - tJtt (x', t')tJt t (x, t) = 0 (8-31')

after a similar argument using the fact that atJt(t)/at and 1/I(t), atJtt(t)/
at and tJtt (t) commute. Thus we have obtained all the commutation relations
that satisfy relativistic requirements.
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Even for more complicated tensor or spinor fields, the preceding argument
may be applied as long as the fields can be expressed in canonical form
and their components satisfy the Klein-Gordon equation; thus we can derive
relativistic commutation relations from the canonical commutation relations. (I
might remind you that the fact that the component satisfies the Klein-Gordon
equation means that the field satisfies the de Broglie-Einstein relation but not
necessarily that the field equation is the Klein-Gordon equation. The Dirac
equation is a good example.) For cases other than the scalar field, however,
the left-hand side of the commutation relation is not a scalar but in general
a tensor or a spinor. Accordingly, the right-hand side cannot be a scalar like
the .1-function we just discussed. However, even for such cases, there always
appears on the right-hand side some term in which some differential operators
(including the zeroth differentiation), having the same transformation property
as the left-hand side, are operated on .1. For example, in the vector field,
the field quantities are described by the four-vector tJt], tJt2, tJt3' tJto, and their
commutation relation is

11, v = 1,2, 3, O. (8-32)

Here, V/J. on the right-hand side is the l1-component of the differential operator
Va, defined in (8-16), and g/J.v is the I1v-component of the metric tensor. Note
that the left-hand side is of the form vector x vector, and therefore it is a second
rank tensor, but the right-hand side is also a second-rank tensor. In addition,
we have relations that tJt/J.(x, t) and tJtv(x', t') commute and that tJtJ(x, t) and

tJtv
t (x', t') commute. I do not give an example here, but a similar situation exists

for a spinor field.
Thus in the relativistic commutation relation derived from the canonical

commutation relation, regardless of whether for a tensor or a spinor field, not
only do the left- and right-hand sides have the same transformation properties,
but also the right-hand side must always be .1 to which some covariant differ
ential operator has been applied. This last point is essential; because of this, all
commutation relations have identical form in all Lorentz systems. On the other
hand, we can prove that there does not exist any invariant scalar function other
than .1 which can be used. [If we abandon the initial conditions (II) and (III)
which require the canonical commutation relation at t = t', then there exists one
more invariant scalar function .11 in addition to .1. However, this function does
not have property (C), and therefore physical quantities at different points at
t' = t do not commute. From this follows the vexing situation that two different
physical quantities at two different points cannot be measured simultaneously,
and therefore .1] is useless.]
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Because of this situation, the commutation relation can onLy have the form

if it is to satisfy the requirement that it retain its form in all Lorentz systems for
any field. (This includes the case when the field is not canonically describable
and we cannot start from canonical commutation relations.) ex on the right-hand
side is a real constant which cannot be determined from the aforementioned
requirement alone, and DiJ.v is a differential operator which has the same
covariance property as the left-hand side. Furthermore, for the anticommutation
relation, for which the relation with the canonical theory is not as natural, we
also see that

is the only relation satisfying the requirement that it have identical form in all
Lorentz systems. [You might worry that for anticommutation relations, tJt(x, t)
and tJt (x', t), and tJt t (x, t) and tJt t (x' , t) do not commute and therefore all the
field quantities at different places cannot be simultaneously measured; I shall
address this concern shortly.]

In the discussion given so far, it did not matter whether the field is a tensor or
a spinor, but now the difference emerges. For a tensor field the left-hand side of
the commutation relation is always an even-rank tensor. Therefore, DiJ.v must
be an even-order differential operator. Thus if we consider

x == [tJtiJ.(x, t)tJtJ(x', t') =f tJtJ(x', t')tJtiJ.(x, t)]+

[tJtiJ.(x', t')tJtJ(x, t) =f tJtvt(x, t)tJtiJ.(x', t')] (8-34)

= iex{DiJ.v • .1(x - x', t - t')

+ [the same as on the left except that (x, t) and (x', t')

are interchanged] },

since DiJ.v on the right-hand side is differentiation of even order, the symmetry
property of a function does not change when it is applied. Therefore, the right
hand side should have the same symmetry property as

.1(x - x', t - t') + .1(x' - x, t' - t).

In other words, due to (B) given earlier, it should be symmetric with respect
to interchange of x and x' and anti symmetric with respect to interchange of t
and t'. On the other hand, since the left-hand side is symmetric with respect to
interchange of (x, t) and (x', t'), if it is symmetric with respect to interchange
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ofx and x', then it must also be symmetric for interchange of( and ('. Therefore,
we are led to conclude that the symmetry properties of the right- and left-hand
sides are different. From this we realize we must have

x(x - x', ( - (') = o.

This does not pose any problem if we use the minus sign in the top expression
of (8-34). Indeed that was the case for the Klein-Gordon field. However, a
contradiction results for the plus sign. For if we put x = x', ( = (',11 = v,
we obtain

but since the eigenvalues of neither tJt tJtt nor tJtt tJt can ever be negative, X = 0
means tJt = 0, tJtt = O. Thus we arrive at the conclusion that it is impossible
to use anticommutation relations for a tensor field. This means that the particle
associated with a tensor field must be a boson. So far we have been discussing
cases in which the field is described by complex tJt and tJt t , but we arrive at
the same conclusion for real tJt.

What happens for a spinor field? Again our lack of knowledge of spinor
algebra hampers our argument, but we can say that in this case DiJ.v is a
differentiation of odd order. In this case, X in (8-34) does not have to be zero,
and therefore we do not have to worry about the problem of tJt = tJtt = 0,
even if the anticommutation relation is used. Therefore, for this case, either
the anticommutation relation or the commutation relation can be valid without
contradiction. However, as I pointed out earlier in (8_13'), negative energy
results for a spinor field, and thus to avoid this difficulty, the particle must be a
fermion, and therefore the anticommutation relation must be used.

If we summarize all these conclusions, we obtain (8-14'). Here it is very
significant that the anticommutation relation is possible only for a spinor field.
I told you earlier that for the case of an anticommutation relation, tJt and tJtt
at different points at the same time do not commute, and therefore we cannot
measure the field at different points simultaneously. However, in this case, tJt
and tJtt are spinors, and as I told you in the previous lecture, what is physically
meaningful is not tJt or tJtt itself but tensors composed of an even number of
tJt or tJt t . It should be noted that these tensors do not change sign upon a 2rr
rotation of the coordinate axes and they always commute for different points at
the same time.

Now I am going to end this long story, but before claiming the validity of
the title of this lecture, there is still a gap in the logic. Namely, we have not
yet proved that tensor fields correspond to integral spin and spinor fields to
half-integral spin. In order to do that, we need not only spinor algebra but also
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the complicated mathematics of angular momentum, and to my regret I cannot
go into it. However, I can roughly say as follows. We can prove the above
statement using the facts that (a) addition of an even number of 1/2 spins gives
only integral angular momentum and addition of an odd number of 1/2 spins
gives only half-integral angular momentum and (b) an even-rank spinor can be
regarded as a tensor, but an odd-rank spinor is still a spinor.

Anyhow, it is extremely interesting that the important results of the relation
between spin and statistics can be derived from the most fundamental require
ments only-such as the covariance with respect to Lorentz transformation and
the de Broglie-Einstein relation. In concluding this long story, let me quote
Pauli's words at the end of his paper. "We wish to state, that according to our
opinion the connection between spin and statistics is one of the most important
applications of the special relativity theory."

As I told you at the beginning of today's lecture, Pauli published this paper
in 1940, but I might note that the four-dimensional commutation relation that
Pauli used there had already been discussed in 1927 in his paper with Jordan on
the electromagnetic field. It was already pointed out in this paper that the right
hand side and the left-hand side of the four-dimensional commutation relations
for E(x, t) and H(x, t) should have the same covariance properties and that the
right-hand side is a covariant differential operator applied to an invariant scalar
function .1.

Finally, I would like to point out that the relation between spin and statistics
discussed so far applies to elementary particles. But exactly the same conclu
sions are obtained for composite particles (for example, for atoms and molecules
or general atomic nuclei). I shall talk about this in the next lecture.



LECTURE NINE

The Year of Discovery: 1932

The Discovery of the Neutron and Ensuing
New Developments

Since I have talked quite a bit using mathematics, today I shall talk without
mathematics. When I discussed the spin and statistics of elementary particles,
I mentioned some events that formed the background for Pauli's study of this
problem. They were the discovery of the neutron in 1932 and several theoretical
developments (Heisenberg's theory of nuclear structure, Fermi's theory of
13 decay, and Yukawa's meson theory) that were stimulated by it; again on

the experimental side was the discovery of a new particle by Anderson and
Neddermeyer. Today we shall return to 1932 and talk in somewhat greater
detail about the happenings around that time.

As I told you last time, 1932 was truly quite a year. It was the year in which
Anderson discovered the positron and Chadwick discovered the neutron. In
addition, the chemist H. Urey discovered hydrogen with atomic weight 2,
the so-called heavy hydrogen (deuterium), and J. Cockcroft and E. Walton
finished building their ingenious apparatus for accelerating particles, with which
they destroyed Li nuclei using protons as bullets. Moreover, all these related
discoveries appeared with such fantastic timing that they stimulated one another
with a tremendous multiplicative effect. For example, the spin and magnetic
moment ofthe neutron, which are difficult to measure directly, were determined
indirectly by measuring those of the deuterium nucleus.

As for every discovery, those mentioned above involved a succession ofmany
episodes. Some scientists were very close to these discoveries but missed them,
and other scientists captured what other people missed by adopting methods
which with hindsight were obvious, like Columbus' egg. I Also, some scientists

I "Columbus' egg" is an idiom which seem~ to be known in Eastern Europe and Asia, but
not in North America. The apocryphal origin of the idiom is the following When someone told
Christopher Columbus that anybody could have discovered the New World. Columbus challenged

150
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Figure 9 I JaJIltti ChOOwid. (1891-1974)
If'ho(ograph by BOrtullti Eli:>clte Cvur1esy

of AlP Emilio Seg~ Visual Archivesl

serendipitously discovered things. For example. Anderson was not allempling
to discover the posilron when he did. He wa." trying to detennine the energy of
charged particles in cosmic rays and wa... laking photographs of particle paths
in a Wilson cloud chamber under a strong magnetic field when he found the
flight tracks of positrons in many pictures.

Many scientists beside Anderson were doing similar experiments. Why
did they fail to discover the positron? Although one rea.<;oo was that their
experiment.. were not as large scale as Anderson's. the chief reason was that
they did not try to establish in which direction the particles were traveling.
Anderson examined the directions of particles merely by inserting a lead plate
into the cloud chamber. In passing through the plate. a particle might lose energy
but never gain energy_ 1berefore. if you measure the radius of curvature of the
track on lxlth sides of the plate and examine on which side the particle had
greater energy. then you can definitively decide from which side the particle hit
the plate. If the direction is thus detennined. we can detennine the sign of the
charge by observing whether the trace curved right or left

him to stand iI raw egg upright on it~ end on iltable After flO me in the room could ~Iish
this. Columbus took the egg. crod1cd 0fIC end of it iIIld then '<1000 it upright 00 the table. (The
reader may wish 10 try this; il does wat.!)
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There is a more complicated and stranger-than-fiction story on the discovery
of the neutron. Although this story is not directly related to spin, let me talk
about it because it is so interesting.

The story goes back to around 1930. At that time W. Bothe and H. Becker
were studying "V-rays by bombarding many atomic nuclei with a-rays from
polonium. After a series of experiments, they found that beryllium nuclei
emitted extremely strong ""V-rays." (Bothe and Becker were thinking that what
came out was a "V-ray just as from other nuclear species, but this was not
completely certain, so I write ""V-ray" with quotation marks. It was shown
later that a "V-ray was indeed coming out of Be, but something else was also
coming out.) Furthermore, this ""V-ray" has the characteristic of extremely
strong penetration, and this aroused many people's attention.

Among the people who became interested in this phenomenon were I. Curie
and F. Joliot. These two scientists, having the advantage of being Curies,
repeated Bothe and Becker's experiment using an otherwise unobtainably large
amount of Po and discovered a peculiar thing.

In order to examine the absorption of this ""V-ray" in passing through various
materials, the Curies put plates of all sorts of materials at the window of the
ionization chamber (an apparatus which measures the intensity of radioactive
radiation by measuring the amount of ions created in the gas) in order to obtain
the effect ofthe ""V-rays" entering the ionization chamber. From this experiment
the Curies found that the presence or absence of Pb, Cu, or C plates had almost
no effect on their measured values, but they observed extraordinarily many ions
in the ionization chamber for samples containing many hydrogens, such as water
or paraffin. Such a phenomenon had never before been observed for "V-rays.

The Curies arrived at the following conclusion after doing many more
experiments to understand this unexpected phenomenon. You must know that
when an X-ray or "V-ray passes through material, its hv scatters electrons
from atoms. These are scattered electrons observed in the Compton effect.
The Curies thought that if hv became very large, then it would scatter not only
electrons but also light nuclei such as protons. They confirmed by calculation
that such a phenomenon was indeed possible if h v of the "V-ray was on the
order of 50 MeV. Therefore, if a "V-ray with a large hv went through water
or paraffin, many protons would be scattered and then go into the ionization
chamber. Then the gas in the chamber would be ionized more strongly by
those protons than by "V-rays, for a charged particle has a higher ionization
capability than a "V-ray. Thus the Curies discovered that the ""V-ray" from
Be scattered many protons from water and paraffin. This phenomenon was
discovered in 1931.

Needless to say, this information was immediately transferred to Chadwick.
Like the Curies, he was interested in the ""V-ray" of Bothe and Becker and was
trying many experiments. He was especially interested by the proton scattering
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found by the Curies and reexamined the phenomenon with a more elaborate
procedure than they had used. He observed that the scattered protons indeed
existed and were flying with a speed on the order of 3 x 109 cm S-I . He therefore
confirmed the Curies' conclusion that the scattered protons were coming from
water and paraffin.

However, Chadwick doubted the Curies' interpretation of the phenomenon
being due to "V-rays. He proceeded as follows. If indeed the scattered protons
with the velocity of 3 x 109 cm s-I were produced by hv of 50 MeV, then if
the same h v scattered a nitrogen nucleus from a nitrogen atom, what would
be the speed of the scattered nitrogen nucleus, and how many ions would the
nitrogen nucleus produce in the ionization chamber? Chadwick calculated this
and checked it with an experiment using nitrogen. He found that many more
ions came out in the experiment than the calculation predicted. Furthermore,
the other fatal flaw that he pointed out in the Curies' interpretation was that
hv with this tremendous energy of 50 MeV was very unlikely to be emitted
from Be. Namely, he knew the energy of the a-particle from Po, the mc2 of Be,
and the mc2 of C, which is produced when an a-particle combines with Be.
Then the magnitude of the hv coming from carbon can be calculated by energy
balance, and hv is at most 10 MeV.

Therefore Chadwick, unlike the Curies, thought that the ""V-ray" coming
from Be was not a "V-ray and suspected that it was a particle without charge
and with a mass nearly equal to that ofthe proton. Chadwick reasoned this way
because, if the mass of the particle is comparable to that of the proton, then
the particle can scatter a proton without having the outrageously large energy
of 50 MeV. You must have learned that in the Compton effect only a small
fraction of the h v of the photon is transferred to the scattered electron. This
also applies to the case of a scattered proton. It was for this reason that the
large energy of 50 MeV was needed for h v. However, if the incoming particle
has a mass similar to that of the proton as Chadwick considered, then it can
transfer its entire energy to the scattered proton during a collision. (If you slide
a nickel squarely into another nickel, the hitting nickel will stop, and the hit
nickel will receive all the energy.) Chadwick further did a variety ofcalculations
and experiments (among them was the problem of scattered nitrogen, which
I mentioned earlier) and accumulated other circumstantial evidence that what
was coming from Be was a neutral particle with the same mass as the proton
and decided to publish the discovery of a new particle in February 1932. This
particle was named neutron.

Thus even hotshots like Curie and Joliotjust missed discovering the neutron.
They missed it perhaps because they had a preconception that the ""V-ray"
was a "V-ray. On the other hand, Chadwick, as he himself mentioned in his
Nobel lecture, was influenced by his mentor Rutherford, who anticipated around
1920 the existence of neutral particles with mass similar to that of the proton.
Therefore, it is certain that such an idea was rooted in Chadwick's mind. Since
he quotes Rutherford's words in his lecture, let me repeat them here.
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"Under some conditions it may be possible for an electron to combine much
more closely with a hydrogen nucleus, forming a kind of neutral doublet ...
Its external field would be practically zero ... and in consequence it should be
able to move freely through matter."

Chadwick, who was faithful to his mentor, not only took these words of his
mentor to heart but also tried all sorts of experiments to actually discover this
neutral particle. Therefore, I imagine that as soon as the Curies detected the
scattered proton, Chadwick must have immediately remembered the neutral
particle mentioned by Rutherford.

Actually, there was another scientist before Chadwick who did an experiment
believing that the ""V-ray" might be a neutral particle. His name was H. C.
Webster. He seems to have made an unfortunate choice of how to do the
experiment, and he did not discover the neutron.

The first task after the discovery of the neutron is to determine its accurate mass
and its spin, statistics, and magnetic moment. Now since the neutron is neutral,
we cannot use the methods applicable to nuclei. However, it was lucky that,
as I told you earlier, the deuteron was also discovered at this time. Because a
deuteron is a combination of a proton and a neutron, quite a bit of information
about the neutron was indirectly obtained from the deuteron. Let me now go
into this story.

Since the mass number of the deuteron is 2 and its charge is I, we can imagine
that it is a combination of a neutron and a proton. This was experimentally
confirmed in 1934, two years after the discovery ofthe neutron, when Chadwick
and M. Goldhaber bombarded the deuteron with "V-rays and dissociated it into a
proton and a neutron. This experiment determined the mass of the neutron. The
masses of the proton and deuteron were already known, the energy of the "V-ray
used in the experiment was also known, and the kinetic energy of the proton
from the decomposition could also be measured. Therefore, by combining these
data, the mass of the neutron could be exactly calculated from the balances of
energy and momentum. Thus 1.0085 was obtained. The mass of the proton is
1.00807, and thus the neutron is slightly heavier than the proton.

Next, as I said earlier, it is difficult to determine the neutron's spin and
statistics directly, and therefore we must determine them from the spin and
statistics of the deuteron. The spin and statistics of the deuteron were obtained
in 1934 through the analysis of the band spectrum of the deuterium molecule
(remember lecture 4). This work was done by G. M. Murphy and H. Johnston;
they found that the deuteron obeys Bose statistics and its spin is I. Now that
we know the spin of the deuteron, the spin of the neutron must be half-integral,
such as 1/2,3/2, from the addition ofangular momenta (lecture 5) and from the
fact that the proton spin is 1/2. As for statistics, since the deuteron obeys Bose
statistics and the proton is a fermion, it is concluded that the neutron must be
a fermion according to Ehrenfest and Oppenheimer's rule (in reverse), which I
discuss below.
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This last conclusion is noteworthy. Because Rutherford's neutron was a
combination of a proton and an electron, its spin would have to be an integer
and its statistics according to the Ehrenfest-Oppenheimer rule would be Bose
statistics. Therefore, the neutron discovered by Chadwick was different from
that conceived by Rutherford. Chadwick was faithful to his mentor, but the
neutron itself was not faithful to the great prophets who had predicted its
existence. By the way, the probability that the neutron spin could be 3/2 has
been excluded by various other points of view.

The magnetic moment of the neutron is also difficult to determine directly;
the only way to determine it was by calculating it from those of the proton and
deuteron. It may sound incredible that not only the magnetic moment of the
newly discovered deuteron but also the magnetic moment of the long-known
proton were not yet measured in 1932. Nevertheless, this is a fact. The proton
magnetic moment was first measured by O. Stem and I. Estermann in 1933. As
I told you at the end of lecture 4, Stem measured it by his favorite technique of
bending a molecular beam by an inhomogeneous magnetic field and observed
that the proton magnetic moment is 2.5 eh/2m pc. (Here mp is the mass of the
proton, and just as we say eh/2mc is a Bohr magneton, we call eh/2mp c a
nuclear m!1gneton.) Rabi and his collaborators did a more accurate expenment
in 1934 and obtained 2.79 eh/2mp c, and they simultaneously measured the
magnetic moment of the deuteron to be 0.86 eh/2m pc. Furthermore, they
confirmed that the direction ofthe magnetic moment is the same as the direction
of spin for both the proton and the deuteron.

If we thus know the magnitude and the direction of the magnetic moments
of the proton and the deuteron, then we can calculate the magnetic moment of
the neutron from the relation

I-Ldeuteron = I-Lproton + I-Lneutron (9-1)

(here we wrote the magnetic moment in units of the nuclear magneton as I-L).

We then obtain I-Lneutron = -1.93. The negative sign shows that the direction of
the magnetic moment is opposite to that of spin. In doing this we are implicitly
assuming that the spin 1/2 of the proton and the spin 1/2 of the neutron are
parallel to each other, making the spin of the deuteron I. In other words, we are
assuming in the deuteron that the orbital angular momenta of its component pro
ton and neutron are equal to O. That is to say, we are assuming that the deuteron is
in an S state. This assumption is justified theoretically. Since the binding energy
of the deuteron is extremely small, we can theoretically exclude the possibility
that a proton and a neutron can combine into a state other than an S state.2

2. It was shown by Schwinger that the ground state of deuterium is a mixture of 3Sand 3 D
states and fully described in Rarita Wand Schwinger J 1941 On the Neutron-Proton Interaction
Phys. Rev 59 677-695
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Since the proton is a fermion with spin 1/2, many people had thought, until
its magnetic moment was measured, that it should obey the Dirac equation.
If that were the case, its magnetic moment would have been eh/2mp c, but in
fact the measured value was 2.79 times as large as that. We say that the proton
has an anomalous magnetic moment. The neutron, likewise, has an anomalous
magnetic moment, which was first explained, though qualitatively, in the context
ofYukawa's meson theory. I shall talk about it later; here Ijust narrate an episode
on this anomaly.

I told you that Estermann and Stem measured the magnetic moment of the
proton. One day Pauli visited Stem's laboratory. Pauli asked Stem what he was
doing. Stem told him that he was measuring the magnetic moment of the proton.
Then Pauli said it was meaningless to do such an experiment. "Don't you know
the Dirac theory? It is obvious from Dirac's equation that the moment must
be eh/2mp c." I guess the impact that the Dirac equation made on Pauli was
quite stunning. (This gossip originated from J. H. D. Jensen when he came to
Japan and visited the University of Tokyo the year before last. I did not listen to
him directly, but this story was relayed to me by Professor Fujita of the Tokyo
University of Education.)

When the neutron was discovered, the idea that an atomic nucleus is com
posed of protons and neutrons occurred to several people. Among them was
Heisenberg, who, as soon as he heard news of Chadwick's discovery, started his
epoch-making work, which gives a very clear explanation of nuclear properties
based on this idea. In 1932 he published three papers discussing the structure of
nuclei based on this idea; they all abound in ideas and stimulated many people.
Before going into this subject, it is necessary to know what people had thought
before the discovery of the neutron.

Before the neutron was discovered, the idea was prevalent that nuclei were
composed of protons and electrons. As evidence of this, we can quote the paper
by Ehrenfest and Oppenheimer. These two distinguished scientists wrote a paper
in 1930 titled "Note on the Statistics of Nuclei" and theoretically proved that
the following rule should be valid for the statistics of nuclei: If we have two
nuclei each built up from n electrons and m protons, and if n +m is even (odd),
then only states whose total wave function does not change (does change) its
sign upon interchange of nuclear coordinates are actually allowed. (Read this
remembering diatomic molecules, which were discussed in lecture 4.)

If you read this sentence, it is obvious that they tentatively assumed that
a nucleus is composed of protons and electrons. The essential point in their
proof of this rule is as follows. Both the electron and the proton are fermions.
Therefore, each time the coordinates of two electrons or two protons are
interchanged, the total wave function changes its sign. On the other hand,
interchange of the nuclear coordinates means interchange of electrons n times
and interchange ofprotonsm times, and therefore ifn+m iseven (odd), then the
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sign of the wave function changes an even (odd) number of times and therefore
only those states whose wave function does not (does) change sign with the
interchange of nuclear coordinates are allowed. This is the central point in their
proof. Remembering lecture 4 on the relation between the symmetry of wave
functions and statistics, we can rephrase the rule as "Ifn +m is even, the nucleus
obeys Bose statistics, and if it is odd, Fermi statistics." (Actually, what I just
described as the essential point of this proof is almost self-evident, and it was
not worthy for these two distinguished scientists to have written a paper about
it. It looks like what they wanted to do here was to prove the rule much more
rigorously and to examine its limit carefully. They concluded that if two nuclei
are very close or interacting so strongly that we cannot regard them as separately
closed systems, then this rule cannot be applied literally. Furthermore, they do
not assume anywhere in their proof that nuclei are composed of protons and
electrons, so the rule applies as long as the nuclei are composed of fermions.
More generally, there do not have to be only two species, but any closed particle
system composed of an arbitrary number of fermions and an arbitrary number
of bosons obeys Bose statistics (Fermi statistics) if the number of fermions is
even (odd), and the reverse of this rule is also true.)

What will happen if we apply this rule to actual nuclei? Let us find out.
If a nucleus is composed of n electrons and m protons, then the mass number

A and charge Z are given by

which means

A=m, Z = m -n, (9-2)

m +n = 2A - Z, (9-3)

and therefore we can rephrase the Ehrenfest-Oppenheimer rule by saying that
a nucleus obeys Bose (Fermi) statistics if 2A - Z is even (odd). On the other
hand, as I told you in lecture 4, it is possible to experimentally determine the
nuclear statistics and spin from experimental band spectra. Therefore, we can
experimentally check the validity of this rule, given in final form above.

If we do this for the bands of H2, 02, and He2, we find that the H nucleus
obeys Fermi statistics, the 0 nucleus obeys Bose statistics, and the He nucleus
obeys Bose statistics, and thus all of them obey this rule, and everything is
OK. However, if we examine the band of N2 experimentally, we obtain the
conclusion that the N nucleus obeys Bose statistics. However, for the N nucleus,
Z = 7, A = 14, and therefore 2A - Z = 21 is odd, and if we apply the Ehrenfest
Oppenheimer rule, we conclude that the N nucleus obeys Fermi statistics, and
therefore this rule is violated. (I might also point out that for the D nucleus,
A = 2, Z = 1, and therefore 2A - Z = 3 is odd. According to the rule, it should
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obey Fermi statistics. Nevertheless, the experiment by Murphy and Johnston
shows that it obeys Bose statistics.)

This difficulty of the N nucleus had been known since 1929.3 Ehrenfest and
Oppenheimer knew it very well, of course, and in fact they explicitly point that
out in their paper. Since they knew this example which violated their rule, what
were they thinking about this violation when they published their paper? It is not
quite clear whether they thought that the prevailing theory that a nucleus was
composed of an electron and a proton should be abandoned or that the theory
must be accepted for the time being. In this connection perhaps we should
remember that around 1930 Bohr and quite a few other luminaries were close
to believing that quantum mechanics did not work in nuclei.

Therefore, if Ehrenfest and Oppenheimer were influenced by this belief, then
they would not have concluded that the idea that a nucleus was composed of
electrons and protons should be abandoned simply because there is an instance
in which their rule was violated. We can take the view that the contradiction
posed by the N nucleus is evidence that the quantum mechanics they used for
deriving the rule is not operating in the nucleus. Regardless of whether they
approved or disapproved of the idea that nucleus = n electrons + m protons,
perhaps they presented their rule as they did because of the views prevailing at
that time.

There is one more phenomenon that was blamed on the premise that quantum
mechanics did not work in the nucleus. This is the fact that the l3-rays emitted in
l3-disintegration have a continuous spectrum. Suppose nucleus A is transmuted

to nucleus B by emitting a l3-ray. Here the masses of A and B are definite.
Therefore, because of energy conservation, the difference of their mc2 must be
the energy of the l3-ray. If this is the case, the energy of the l3-ray must have
a definite, discrete value, and therefore a line spectrum should be observed. In
reality, however, the spectrum is continuous. Bohr asserted that this difficulty
appeared because quantum mechanics did not work in the nucleus, and therefore
the law of energy conservation was violated. Bohr said that since an electron
with a Compton wavelength of 10- 11 cm was confined in the small nucleus
with a 10- 13 cm radius, the individuality of the electron was lost in the nucleus.
(A scientist of Bohr's stature did not say it in such a childish way. He seems to
have been considering the Klein paradox.)4 The bottom line is that according to

3 This was noted by w Heitler and G Herzberg (1929 Gehorchen die Stickstoffkeme der
Boseschen Statistik~ Nalurwissenschaflen 17673-674) in the rotational Raman spectrum of Nz
observed by F. Raseui (1929 On the Raman Effect in Diatomic Gases. II Proc. NaIl Acad. Sci
USA 15515-519)

4 "Klein announced IKlein 0 1929 Die Reflexion von Elektronen an einem Potentialsprung
nach der relativistischen Dynamik von Dirac Z Phys. 53 157-1651 his paradox which caused such
headaches to Bohr and others. Klein had noted that the Dirac equation then leads to absurdities
when one attempts to localize electrons with a precision::: hjmc" Pais, Inward Bound, p. 349.
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Bohr's idea, the interior ofa nucleus was a sanctuary that could not be penetrated
by quantum mechanics.

This does not mean that there was no opposition to the theory of a nuclear
sanctuary around 1930. For example, Pauli had an idea, which goes as follows.
There exist in the nucleus particles called "neutrons" which are electrically
neutral with a mass of an electron or nearly zero, and when the nucleus
undergoes l3-disintegration, an electron is ejected together with this "neutron."
If we so hypothesize, the sum of the energies of the electron and this neutral
particle is definitely due to the energy conservation law, but the energy of the
electron itself or the energy of the neutral particle itself can have a continuous
spectrum. This was Pauli's idea. Pauli thought this same idea could solve the
problem of the N nucleus. Apparently he talked about it to Bohr, but it seems he
could not convince Bohr. Not only that, he could not convince his close friend
Heisenberg.

Either because of his well-known perfectionist tendency or because of his
hesitation due to the fact that such a particle had never been observed, Pauli did
not publish this idea in a paper but proposed it to his friends in letters around
1930. The original is in German, but I have an English translation here.

"I came to a desperate conclusion ... that inside the nucleus there may exist
an electrically neutral particle which I shall call neutron. The continuous 13
spectrum is understandable if one assumes that, during l3-decay, the emission
of an electron is accompanied by the emission of a neutron."

Since he wrote this in 1930, it was before Chadwick discovered the neutron.
However, Pauli's "neutron" is different from Chadwick's neutron because of
its mass. Pauli's idea was adopted four years later by Fermi, who solved the
problem of the l3-ray; in order to discriminate Pauli's neutron and Chadwick's
neutron, Fermi called the former a "neutrino."

The fact that Pauli did not publicize his idea and the fact that he writes in
his letter "desperate conclusion" show how timid people were at the time in
considering the existence of new particles other than the proton and the electron.
As I told you earlier, Rutherford was considering the existence of the neutron
around 1920, but even that was considered to be a combined proton and electron
rather than a new particle.

However, spurred on by Chadwick's discovery of the neutron, the situation
began to change drastically. As I told you earlier, as soon as he heard of
Chadwick's discovery, Heisenberg proposed that it is not necessary to assume
the existence of electrons in the nucleus but rather that the nucleus is composed
of protons and neutrons. He showed that, based on this idea, he could explain
most of the intranuclear problems quantum-mechanically, and he destroyed
for the first time the idea of a nuclear sanctuary. However, he retained the
phenomena related to l3-rays within the sanctuary and did not lay his hands on
them. It was Fermi who destroyed this reserved idea of Heisenberg's when in
1934 he treated l3-decay quantum-mechanically, exploiting the idea of Pauli's
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neutrino, which nobody had adopted until then. However, the other problem in
the sanctuary that Heisenberg left untouched, Le., the origin of the exchange
force between protons and neutrons, which plays an important role in his nuclear
theory, was not addressed by anybody for some time despite Fermi's success.
It was none other than Yukawa who opened up this topic by introducing a new
particle, called meson, and invaded the sanctuary with quantum mechanics.

Thus the history of physics after the discovery of the neutron in 1932 became
a history of pulling down one after the other the walls of the nuclear sanctuary,
which had been thought to be impenetrable by quantum mechanics.

I was thinking of talking to the bitter end of this historical development, but
I am running out of time. Since this is the last climax remaining before the
Second World War, I would like to postpone any further discussion and spend
ample time on it in the next lecture rather than do it now in a hurry. In this
process, the important concept of isospin was born. This is different from the
spin associated with angular momentum, but mathematically it has very similar
properties and plays a major role in elementary particle theory. I will spend
ample time on it in the next lecture.



LECTURE TEN

Nuclear Force and Isospin

From Heisenberg to Fermi and from
Fermi to Yukawa

As I promised you last time, I shall talk about how the walls of the sanctuary,
the interior of the nuclei, were gradually removed first by Heisenberg's theory
of nuclear structure and further by Fermi's and Yukawa's. In this process I
shall explain how the new concept of isospin, 1 which is the sibling of spin, was
born. This concept came to play an essential role later in nuclear theory and in
elementary particle theory.

Heisenberg inaugurated his theory of nuclear structure when he submitted his
first paper on it to Zeitschrift fur Physik in June 1932. It was in February of the
same year that Chadwick submitted the report of his discovery of the neutron
to Nature, and this shows how quickly and efficiently Heisenberg worked.
This paper was epoch making not only because it contains the simple idea
that atomic nuclei are composed of neutrons and protons but also because it
proposes that the force acting between neutrons and protons is an exchange
force, and in order to describe this force, the important new concept of isospin,
just mentioned, was introduced. Heisenberg finished writing the second paper
in the next month, July, and the third paper in December and gave a truly
clear theoretical explanation of a variety of nuclear properties. Thus the first
breach was made in the walls of the sanctuary which had so far been considered
unassailable by quantum mechanics.

The start of his paper can be paraphrased as follows:

From the research of the wife-and-hu~band team Curie and Joliot and

its interpretation by Chadwick, we have learned that the new particle
named neutron plays a role in the atomic nucleus. This discovery suggests

I Throughout the text Tomonaga use~ the Japanese phra~e which tran~late~ a~ charl?e ~pin: I
have replaced it with the English word isospin.
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Figure 10.1 HeisenbeTg. 1931
IPhol:cgraph by Max-P1anck
IllSlilUl, Courtesy d AlP Emilio
Segr~ Visual Archivesl

thai an alomic nucleus is composed of neutrons and protons and that the
electron is not one or ils conslituenb, If this hypothesis is correct. (hen

the lheOl)" of the atomic nucleus is greatly simplified. The fundamental
problems which have bothered people so far, such a... why the p-ray ha... a

cantinlJOlls spectrum and why the nitrogen IlIJcleus obeys Bose statistics.
are reduced 10 more fundamet1tal problems such as what is the rule when a
neutron disintegrates into a proton and an electron. why does the lIeutrOfl
obey Fermi slatistics. etc. lright from lhe OlItsel, he is as...uming lhat
lhe Reulron is a fermion); lhe problem of nuclear struclure itself coukl
be separaled from these profound problems. and we can use quantum

mechanics 10 explain !hem a.. (he resuh of !he force belween neuttons
and prolons. elc.

This is the ba<;is of Heisenberg's idea.
As I pointed out to you before. his first requirement in this paper is that

the neutron be a fermion with spin 1/2. This requirement was necessary to
ellplain the ellperimental results on the statistics and spin of the nitrogen nucleus.
(Murphy's ellperimenl had not yet been done. and nothing was known about
the statistics and spin of the neutron.) In fact as I noted earlier. the Ehrenfest-
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Oppenheimer rule holds if the nucleus is composed of fermions, and therefore
their rule holds if the neutron is a fermion by replacing their statement about
electrons by one about neutrons; in applying this rule we can use A = m +nand
Z = m instead of (9-2), and therefore the nitrogen nucleus with even A obeys
Bose statistics. This agrees with the empirical rule from the band spectrum. As
for spin, the addition rule of spin says that the total spin is an integer if A is
even, and this also agrees with experiment.

For these reasons Heisenberg thought that the neutron is a fermion, but he
does not venture on why it must be so. Anyhow, he says that the idea that a
neutron is composed of a proton and an electron is not effective and furthermore
considers the neutron as equally independent an elementary particle as the
proton. But he assumes that, depending on the circumstance, a neutron may
split into a proton and an electron, and in this splitting quantum mechanics
probably does not apply, and the conservation of energy and the conservation
of momentum are violated. In this last point, Heisenberg shared Bohr's view,
which I mentioned in the last lecture, and is opposed to Pauli.

Therefore, Heisenberg spares the sanctuary in which conservation laws are
violated and quantum mechanics cannot help, but he could explore quite a bit
of nuclear physics without disturbing the sanctuary. This is Heisenberg's theory
of nuclear structure.

In order to introduce quantum mechanics into the nucleus, we must know what
type of force acts between the neutron and the proton, its constituents. Since
this force strongly binds neutrons and protons into a clump the size of nuclei,
it must be a very strong attraction. On the other hand, from the experiment of
proton scattering by nuclei, it is unlikely that such a force extends over a long
distance. Therefore, this force must act only when the particles approach within
a distance on the order of the radius of nuclei (10- 13 cm). Let us call this force
the nuclearforce. We can consider three kinds of forces, i.e., between neutron
and neutron, proton and proton, and proton and neutron. Heisenberg reasoned
as follows as to which of them plays the most important role.

It is an experimental fact that if the atomic number Z is not very large
and therefore the charge Ze is not very large, then Z is approximately AI2
for many nuclei, where A is the mass number. This shows that nuclei with
approximately equal numbers of neutrons and protons are most stable. From
this fact Heisenberg concluded that the attraction between neutrons and protons
plays the biggest role in the nucleus. For if the attraction between neutrons
were stronger, then nuclei composed only of neutrons would be more stable,
and therefore more such nuclei should exist. But this contradicts the facts. The
same thing can be said if the attraction between protons is stronger-namely,
nuclei with only protons must be abundant. (The story is different if Z is very
large and Coulomb repulsion is very strong.) For these reasons he considered
only the force between neutrons and protons for the time being.
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Next Heisenberg noticed the experimental fact that the binding energies of
nuclei are approximately proportional to the mass number A (i.e., the number
of particles in the nucleus). From this he was led to the idea that the nuclear
force is not the usual attractive force but is an exchange force. (I will soon
explain the meaning of exchange force.) He reasoned as follows. If the force
acting between a neutron and a proton is the usual two-body force, then if the
potential between the Kth neutron and the Lth proton is written as VK.L, and if
the number of neutrons is written as N and the number of protons is written as
P, then the total potential is

N P

LLVK.L,
K=) L=I

and the total binding energy must approximately equal the number of combi
nations of pairs (K,L), which is N . P ~ A2/4. In reality, it is proportional only
toA.

From this fact Heisenberg cut to the essence of the nuclear force and thought
it must be an exchange force. The concept of exchange force appears in the
field of chemistry. For example, when two hydrogen atoms combine to form
a hydrogen molecule, the force which binds the atoms is an exchange force.
The special characteristic of this force is that once a hydrogen molecule is thus
produced, even though a third hydrogen atom comes close, the hydrogen atoms
in the molecule no longer attract the third atom. Therefore, if we assemble
many hydrogen atoms to make a drop of liquid hydrogen, the binding energy
of the drop is essentially only the sum of the binding energies of the hydrogen
molecules. Therefore, it is only proportional to the number of hydrogen atoms
in the droplet.

Now let me talk about the process occurring when two hydrogen atoms attract
one another to combine into a hydrogen molecule and why we calI the force
responsible for it an exchange force. Since the case of Hi ion is simpler than
the case of hydrogen molecule and is closer to that of a neutron and a proton,
let me use it as an example as we proceed.

The Hi ion is a mechanical system composed of two protons and one electron.
For simplicity let us assume that the two protons are fixed in space. We shall
label these two nuclei as nucleus I and nucleus II. Let us first consider the case
in which the two nuclei are infinitely far apart. We can consider two states.
The first state is when nucleus I and the electron form a hydrogen atom and
nucleus II is naked. The second is when nucleus I is naked and nucleus II and
the electron form a hydrogen atom. Let us write the coordinate of the electron as
x and the wave functions for these two states as 1f!I(x) and 1f!II(X). It is obvious
that 1f!I(x) is the wave function of the hydrogen atom when only nucleus I
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exists and 1/111 (x) is the wave function of the hydrogen atom when only nucleus
II exists. We assume that both hydrogen atoms are in the ground state.

In practice, however, nucleus I or nucleus II does not exist alone, but the two
nuclei exist with a finite separation. Even then, if their separation is very large,
we can consider either 1/11 (x) or 1/111 (x) as the eigenfunction of the whole system
in a zeroth approximation. We can also assume that they belong to the same
eigenvalue in the zeroth approximation. Therefore, the state of this system is
doubly degenerate in this approximation, and we can use a linear combination
of 1/11 (x) and 1/111 (x)

¢(x) = CI1/I1(X) + CZ1/l1l(X) (10-1)

as the eigenfunction for the whole system in the zeroth approximation.
However, even if the internuclear distance is large and 1/11 (x) and 1/111 (x) are

still good approximations for the eigenfunctions, if the distance is finite, the
double degeneracy of the eigenvalue is broken, and the level should split into
two. Then for each eigenvalue, CI and Cz should be determined uniquely (apart
from a constant factor). In order to determine the values of CI and Cz, we can
use perturbation theory for the degenerate levels, but it is more convenient for
our purpose to use a different method.

Please put up with my bad habit of writing a few formulas. Let us assume
that the two nuclei are at points -r/2 and r/2 on the x-axis. (Needless to say,
±r/2 are the vectors with the components (±r/2, 0, 0), and the internuclear
distance is r.) Then the Schrodinger equation of our system is

(10-2)

If we make the transformation x -+ -x, we obtain the equation for ¢(-x), but
the expression inside the brackets of (10-2) is invariant. Therefore, we are led
to the conclusion that if¢(x) is a solution, then ¢(-x) is also a solution. Please
remember lecture 5, in which we derived (5-16), and (5-16)a from (5-14). Then
we find that for the eigenfunction of (10-2), either

¢(x) = ¢(-x) == ¢s(x) or

¢(x) = -¢( -x) == ¢a(x).

(10-3),

( 1O-3)a

In other words, the eigenfunction of (10-2) is a function either symmetric or
antisymmetric with respect to the transformation x ~ -x.

The relations (10-3), and (l0-3)a thus obtained are valid for large as well as
small internuclear distance r. Let us limit ourselves to the case in which r is
sufficiently large that ¢ (x) in the form of (10-1) is still a good approximation.
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For such a case the relations (l0-3)a and (10-3), are valid only when we use
C\ = Cz and C\ = -Cz, respectively, in the right-hand side of(lO-I). Namely,
if we consider the wave function for the ground state of a hydrogen atom placed
at the origin, then it is a function of the form 1/I(lxl), and if we use this function
to express 1/1\ (x) and 1/111 (x), then

1frI(x) = 1/1 (Ix + ~ I) (10-4)

1frI1(X) = 1/1 (Ix - ~I),

and therefore we see that the transformation x ~ -x is equivalent to the
transformation I ~ II, and finally

I
¢s (x) = .j2 [1/11 (x) + 1frI\ (x) J (1O-4)s

I
¢a (x) = .j2 [1/11 (x) - 1/111 (x) J (l0-4)a

satisfy (1O-3)s and (1O-3)a, respectively.
Now, how about the eigenvalue of ( 10-2)? First notice that since r appears

as a parameter in (10-2), the eigenvalue E(r) is also a function of r. As I told
you earlier, if the distance between the nuclei is finite, the eigenvalues split
into two. Therefore, ¢,(r) and ¢a(r) have the eigenvalues Es(r) and Ea(r),

respectively. When the Coulomb energy eZ/ r between the protons is added to
these two eigenvalues, the resulting quantities

(10-5)

give the total energies for the ¢s(x) and ¢a (x) states, respectively, and therefore
they each become a potential for the force acting between nuclei I and II. We can
!>how in general, regardless of the value ofr, that Js(r) < Ja(r), and furthermore
for large values of r for which (1O-4)s and (l0-4)a are good approximations,
Js(r) is negative, and -Ja(r) = Js(r). We can therefore write

Js(r) = -J(r)

Ja(r) = J(r),

(10-5')

where J (r) > 0, monotonically decreasing toward J (00) = 0 as r is increasing.
We therefore see that there is an attraction between nucleus I and nucleus II in



168 LECTURE 10

the symmetric state and a repulsion between them in the antisymmetric state.
Thus Hi will be stable in the symmetric state but not in the antisymmetric state.

We thus see that two protons are stably bound in spite of the Coulomb
repulsion because of the electron surrounding the nuclei. As our eigenfunction
(l0-4)s or(l 0-4)a indicates, 1/11 (x) or 1/111 (x) alone does not give a correct solution
even if the two nuclei are far apart. The electron is visiting both nuclei equally,
and if the way of visiting is symmetric, there will be an attraction between the
two nuclei, and if it is antisymmetric, there will be repulsion. This will be our
conclusion.

We naively thought at the outset that, if the two nuclei are infinitely far apart,
1/11 (x) and 1/111 (x) can each individually be an eigenfunction; but this seems to
contradict the fact that the electron is visiting both nuclei equally. How can we
understand this? You will be relieved of this worry if you think as follows.

Let us construct a wave packet

(10-6)

using the eigenfunctions <Ps (x) and <Pa (x) given in (lO-4)s and (10-4)a. This is
certainly a solution of the time-dependent Schrodinger equation, and therefore
this is a possible state of our mechanical system. Let us substitute (l0-4)s and
(lO-4)a for <Ps(x) and <Pa (x), respectively, on the right-hand side of (10-6) and
take the absolute square of both sides. We immediately obtain

I<p±(x, t)1 2 = 11/11 (x)1 2 [I ± cos *(Ja - Js)t] +

11/I11(x)1 2 [I ~ cos *(Ja - Js)t] +... ( 10-6')

Here the ellipsis includes terms in 1/Ji (x) 1/11, (x) and 1/11 (x)1/IIi<x), which go to
zero as r -+ 00, and we can ignore them if r is sufficiently large. If these
terms are neglected, the right-hand side of (10-6') shows that the coefficients
of 11/11 (x)1 2 and 11/I11(x)12 increase and decrease alternately with the frequency

( 10-7)

This means that the electron jumps back and forth from I to II and II to I with
the frequency v. From the relation J(oo) = 0 just mentioned, this frequency
becomes zero as r -+ 00. Therefore, in this limit <P+ is always 1/11, and <P
is always 1/111. We now see that the contradiction mentioned earlier has been
resolved. At the same time, we now understand that there is the intimate relation
(10-7) between the potential ±J(r) of the force acting between the two nuclei
and the frequency v of the electron shuttling between the two nuclei. If the
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electron did not move from one nucleus to the other, then the frequency would
be zero, and therefore J(r) would also be zero.

We therefore can say the exchange force originates in the shuttling of the
electron; if we express this shuttling of the electron in other words, we may
also imagine that nucleus I and nucleus II alternately don the electron. Or we can
say that the particle at -r/2 and the particle at r/2 are alternately becoming
the neutral atom and the positive ion. This alternation is the essence of the
exchange force.

Heisenberg thought something similar is taking place between the neutrons and
protons in nuclei. Namely, a proton and a neutron in the nucleus also alternately
gain or lose the charge, and thus a neutron changes to a proton and a proton
changes to a neutron repeatedly. This was Heisenberg's idea. He thought that
if this exchange of electric charge occurs with a frequency v, then there should
appear a potential ±J(r) given by (10-7).

Here we obviously cannot adopt the analogy with Hi literally. This is because
in the case of Hi the exchange of an electron not only changes a hydrogen atom
into a hydrogen ion and a hydrogen ion into a hydrogen atom, but, since the
Ehrenfest-Oppenheimer rule shows that the hydrogen atom is a boson and the
hydrogen ion is a fermion, the statistics is also alternating from Bose to Fermi
and Fermi to Bose. However, in the case of a neutron and a proton, both are
fermions, and the statistics is constant. But if we can consider the neutron to be
composed of a proton and a particle with spin zero which may be called a boson
electron (this is a version of Rutherford's neutron), then it is not impossible to
imagine that this boson electron is going back and forth between the neutron and
the proton. Heisenberg did refer to this idea. Nevertheless, he concluded that
it was better to ignore the existence of the boson electron, perhaps because he
was not sure whether he could use quantum mechanics for the shuttling of this
particle even if this idea were adopted; he did not adopt this idea and deemed
the neutron and proton as equally elementary particles, for which the alternation
of neutron to proton and proton to neutron with a frequency of 2J(r)/ h was
an intrinsic property of these particles.

How can we mathematically formulate the exchange force without introduc
ing a gimmick like the boson electron? In the case of Hi, the symmetry of the
wave function with respect to the transformation x~ -x determined whether
the potential of the exchange force was -J (r) or +J(r). In this case, x was the
coordinate of the electron (or boson electron). Therefore, we cannot use this
formulation without considering the electron (boson electron) for the exchange
force. What can we do? Here Heisenberg was led to the concept of isospin
from the analogy with spin and established a formulation ofthe exchange force
without using x.

Remember that in lecture 5 I discussed the apparently strong interaction
between two spins. When just now I talked about Hi, I reminded you about
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(5-14), (5-16)s, and (5-16)a: as in the case of Hi, the symmetric and antisym
metric states also appeared there, and the energy difference resulted from the
symmetry of the state, and this difference was attributed to the apparent spin
spin interaction. I did not use the term exchange force in lecture 5, but this
apparent force is precisely the exchange force. Although this exchange force
originates from the orbital angular momentum of the electrons, we can regard
it as if it were an interaction between two spins.

As I told you in lecture 5, it was Heisenberg who played the major role
in the discussion of the spin-spin interaction. Therefore, it is understandable
that he thought that the exchange force in the nucleus can be formulated using
something like the spin matrix regardless of whether or not the boson electron
exists. Now we shall go into the story of isospin.

When I discussed the problem of Hi, I said that the particle at the position
-r/2 and the particle at position r/2 alternately become the neutral atom and
the positive ion. Now if the particle at -r/2 is the neutral atom and that at r /2
is the positive ion, then the state is "/1t: if the particle at -r/2 is the positive ion
and the particle at r /2 is the neutral atom, then the state is 1/111. In in (10-4)s <Ps has
the property that it does not change sign when the neutral atom is changed to the
positive ion and the positive ion is changed to the neutral atom, and <Pa of (10-4)a
has the property ofchanging sign. We can say this: "<Ps is symmetric and <Pa is an
tisymmetric with respect to the transformation which changes the neutral atom
to the positive ion and the positive ion to the neutral atom." We have learned that
there exist the attraction -1 (r) for <Ps and the repulsion +1 (r) for <Pa. This last
point discriminates between the exchange force and an ordinary force, i.e., for
an ordinary force the same potential appears regardless of the symmetry of <p.

So far I have been discussing Hi, but if the exchange force is defined in this
way, then the coordinate" of the electron is not explicitly involved, and therefore
we can consider this to be the characteristic of the exchange force between a
neutron and a proton. In order to do that, we simply replace "neutral atom" for
Hi with "neutron" and "positive ion" with "proton." This is Heisenberg's idea.

Now then, how can we mathematically express the operation of changing a
proton into a neutron and a neutron into a proton? At this very point Heisenberg
introduced isospin. For this purpose, instead of considering the neutron and
proton as different elementary particles, he considered them as two different
states of the same elementary particle. This elementary particle was later called
nucleon. If I use this terminology, I can say that the constituents of an atomic
nucleus are elementary particles called nucleons which have two states called
the neutron state and the proton state. Since the neutron is a fermion with spin
1/2, in both states the nucleon is a fermion with spin 1/2, and therefore we can
regard the nucleon itself to be a fermion with spin 1/2. If we maintain that the
nucleon can take two states, then automatically we must accept a fifth degree
of freedom in addition to the x, y, z, and spin degrees of freedom.
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This fifth degree of freedom is like the spin degree of freedom in that it can
take only two states. Therefore, Heisenberg introduced the 2 x 2 matrices

~ = (0 I)
P I 0 (10-8)

to describe this degree of freedom. Obviously these have the identical form as
the Pauli spin matrices. From the analogy with the case of spin in which spin
up is az = +I and spin down is az = -I, Heisenberg chose the state for which
the eigenvalue of p( is +I to be the neutron state and the state for which the
eigenvalue is -I to be the proton state.2 Then if we write the wave function
(which is a two-component quantity) for p as

then

(10-9)

an == (~) and a P == (~) ( 10-9')

represent the eigenfunctions of the neutron state and the proton state, respec
tively. Let me note that just as in the case of spin, there are relations

p~an = a P

p'lan = iaP

p(an = an

p~aP = an

p'laP = -ian

p(aP = -aP.

(10-10)

Now let us consider two nucleons and distinguish them by the subscripts I
and II. Then the wave function for the state in which nucleon I is a neutron and
nucleon II is a proton can be expressed as the product

~n.p _ ~n~P
u. - U.I U.II' (lO-I1)n,p

and that for the state in which I is a proton and II is a neutron can be expressed as

~p,n _ ~P~n
u. - U.I U.II' (10-11 )p,n

If I continue the analogy of Hi, an,p corresponds to VrI, and aP,n corresponds
to Vru. We now see the transformation "changing a neutron into a proton and

2 The modern convention is the opposite of Heisenberg's. i.e , +I for the proton state and -I
for the neutron state
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a proton into a neutron" is nothing but changing n to p and p to n in these
formulas. Next we can write the formulas corresponding to ¢s and ¢3 for Hi.
They are

s n P P n
a = aI all + a I all

3 n P P n
a = aI all - a I all

(1O-12)s

(10-12)3

Here it is obvious that as is symmetric with respect to the transformation
that changes a neutron into a proton and a proton into a neutron, and a 3 is
antisymmetric.

Having come this far, we can immediately make a matrix which is -J(r)

for a symmetric state and +J(r) for an antisymmetric state. Namely,

(10-13)

has this property. If what I just mentioned is the only requirement, then

the expression in parentheses could be either pr prI only or pi piI only. But
Heisenberg thought there was no nuclear force between protons and between
neutrons, so he had to resort to (10-13) so that, if both nucleons were in the
neutron state or if both were in the proton state, there would be no nuclear force.
Using (10-10), we can easily see that

I ( ~ ~ 'I 'I) S S2 PI PII + PI PII a = a

I ( ~ ~ 'I 'I) 3 32 PI PII + PI PII a =-a

1(~~+'I'I)nn_o2 PI PII PI PII aI all -

I(~~ '1'1) PP-o2 PI PII + PI PII a I all - .

(10-14)

From the first two equations of (10-14), we find that in the as state, (10-13)
has the value of - J (r), and in the a 3 state it has +J (r); and from the last two
equations of (10-14), we can conclude that there is no force if the nucleons are
both neutrons or both protons. Furthermore, by using the "wave packet"

we find that the transformation from a neutron into a proton or a proton into a
neutron occurs with the frequency v = 2J (r)h.

So far we have considered only two nucleons, but if there exist, in general,
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N nucleons, then we can consider a matrix

N

- ~ L (p~pt + PkP1) J(rKL)
K>L

(10-15)

which expresses the sum of the exchange forces. In addition to this exchange
force, there is a Coulomb force between protons, so we simply have to add

(10-15')

Therefore, as the total Hamiltonian for a nucleus, we can use

(10-16)

This is Heisenberg's iLea. Since the mass of a nucleon is large, the velocity of
a nucleon in the nucleus is small, and a nonrelativistic Hamiltonian suffices.

From the Hamiltonian (10-16), Heisenberg derived a variety of conclusions.
Furthermore, since the simplest deuteron presents only a two-body problem, it
is possible to provide a mathematically rigorous treatment. Doing so, we find a
few points to be corrected in the Hamiltonian (10-16). One of them is that we
must change the sign of J (r) in (10-16). For as it is, the spin of the deuteron
becomes zero. (When he wrote this paper, Murphy and Johnston had not yet
done their experiment.) The other point is that if we use his Hamiltonian, the
great stability of the helium nucleus cannot be explained, and the repulsive
force (because we changed the sign of J (r» in the ¢s state of the deuteron
becomes too big and does not agree with the collisional experiments between
the neutron and the proton. This last point, however, can be improved by adding
a term (UK 'UL), which contains spin, to the exchange force. [This nuclear force
containing (UK' ud is named the Majoranaforce after its proposer.]

Around 1936 the remarkable fact was shown experimentally that even be
tween two protons there is a nuclear force in addition to the Coulomb force,
and this force equals the force between a neutron and a proton in the ¢s
state. If we thus assume that the same force also acts between neutrons,
then this remarkable fact can be incorporated into the theory by substituting

(p~pi + PkP2 + p~pi) = (PK· pd for the factor (p~pi + PkP2) in (10
15). Here I wrote p, which means we considered (p~, pT/, p{) as a vector in
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~1j{ space, but the fact thai pI;, prj. p( appear in the expression for the nuclear
force in the form of the inner product (PK • PL) means that as far as the nuclear
force is concemed,l;l1{ space is isotropic just as xyz space, in which the spin
components aX, crY. a l are defined, is isotropic. From dlese points of view, p
is not just a convenient tool to formulate Ihe nuclear force, but like cr it is a
very fundamental physical quantity. For this reason, just as we called a /2 spin,
we call p/2 isospin. If we adopt this idea. the occurrence of the two kinds of
potential, 1s(') or 1a(r), depends on whether the isospins of nucleons I and II
are parallel or antiparallel.

Now let me give you just one example in which the concept of isospin plays
a role. If we extend Heisenberg's idea. namely that the neutron and the proton
are not different e)ememary particles but different slales of the same elementary
particle. i.e.. die nucleon, then the three nuclear species 14C. 14N, and 140 may
be regarded as different states of the same nucleus, since they are all comjX).'ied
of fourteen nucleons. In the approximation in which the Coulomb interaction is
neglected, the total isospin and its {-component commute with the Hamiltonian.
and therefore

and
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are two conserved quantities, and we can use the numbers T and T{ related to
their eigenvalues as the quantum numbers to label the state of the nuclei. This
is analogous to the case of atomic spectroscopy in which s of (LK 1UK)2 =
s(s + I) and SZ from LK 1si- = SZ are used to label atomic levels.

If we apply this idea to the case of 14C, 14N, 140, then from a variety of
experiments we see that the ground state of 14N is the state for T = 0, T{ = °
and that the ground state of 14C, the first excited state of 14N, and the ground
state of 140 correspond to the three states of T = I. Out of these three states,
the state of 14C corresponds to T{ = -I, that of 14N to T{ = 0, and that of 140
to T{ = I. Therefore, if we use spectroscopic terminology, the ground state of
14N is singlet and the remaining three states are triplet. The three levels of the
triplet are degenerate if we do not consider the Coulomb force between protons;
but if we do consider it, then the triplet splits into three levels, just as in atomic
spectroscopy the levels are split into three levels by the internal magnetic field.
Furthermore, the splitting pattern agrees very well between experiment and cal
culation. I show this pattern in figure 10.3. As you see from this example, it has
become possible to relate energy levels ofnuclei which are isobaric to each other
by applying to isospin the same method that was used for treating multiplets
in atomic spectroscopy. In this sense, isospin is sometimes also called isobaric
spin. (Somebody3 called it isotopic spin, but I do not think this is a good term.)

The concept of isospin plays an important role not only in this nuclear
"spectroscopy" but also in the Fermi theory and the Yukawa theory, as I shall

T=1
T'= 0 Triplet

T=1
Triplet 14C,14N,140 14N

T'= 0 T'= -1
T=O

Smglet 14N 14C

(a) (b)

Figure 10 3 Energy levels of the 14C. 14N. and 140 nuclei (a) shows the levels when the Coulomb
splitting is neglected; (b) shows the splitting of the triplet state when the Coulomb energy is taken
into account.

3. Eugene Wigner
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explain later. The fact that this concept has come to have an initially unexpected
meaning clearly shows how prescient Heisenberg was. Heisenberg arrived at
the idea of isospin from the analogy with spin, and I think one of the major
characteristics of his thought process is this type of analogy. Moreover, his
analogizing does not remain merely a phenomenological method, but in many
cases it turns out to hit upon something fundamental. Dirac's acrobatics, Pauli's
frontal assault, and Heisenberg's analogizing: each is uniquely characteristic of
its practitioner so that we are never bored following their work.

Heisenberg's theory opened the way for the application of quantum mechanics
to problems inside the nucleus. As I told you in the previous lecture, the
statistics, spin, and magnetic moment of the neutron were obtained from those
of the deuteron, and the sole reason that this was possible was that quantum
mechanics could be applied to the deuteron. Furthermore, for the statistics of
nuclei, we can use the Ehrenfest-Oppenheimer rule to conclude that ifA is even
(odd), then the nucleus follows Bose (Fermi) statistics; on the other hand for
spin, according to the addition rule for angular momenta, if there are an even
(odd) number of spin 1/2 particles, their total angular momentum is integral
(half-integral). If we summarize these two conclusions, then we have that if the
spin is integral (half-integral), then the nucleus follows Bose (Fermi) statistics.
This means that Pauli's relation, which we discussed in lecture 8, also holds
true for composite particles. Moreover, we can use isospin instead of spin in
these rules. In our example of 14C, 14N, 140, there are singlet and triplet states,
and this means that the total isospin is an integer and follows the rule. These
conclusions could be reached because quantum mechanics is applicable inside
the nucleus.

However, even Heisenberg apparently was not free from Bohr's influence,
and he dared not touch the problem of l3-decay, believing that quantum mechan
ics was not applicable. It was none other than Fermi who rejected Bohr's idea
and incorporated l3-decay into the framework of quantum mechanics utilizing
Pauli's neutrino. His work appeared in 1934.

Fermi started from Heisenberg's idea that there is no such thing as an electron
in the nucleus and that there exist only several nucleons which have the fifth
degree of freedom of p( = ± I. Let us consider a nucleus with mass number A.
This is a mechanical system composed of A nucleons. There exist a variety of
nuclei with different atomic numbers as isobars, but let us take the Z of the lowest
energy as Zoo Then among the isobars, those with Z 2: Zo + I or Z ::s Zo - I
can be regarded as excited states of our nucleon system. (In the example of a
fourteen-nucleon system which I just mentioned, the ground states of 14C and
140 were regarded as excited states of 14N.) Now if we consider a nucleus with
Z = Zo - I, then this nucleus has one more nucleon in the neutron state and
one less in the proton state than the Zo nucleus. If the excitation energy is larger
than the rest mass of the electron, me2, then the nucleus undergoes a transition
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10 the ground stale Zo. In the proces.... one of the nucleons in the neutron state
emits an electron and Pauli's neutrino. (We as....ume here the neulrino mass 10
be 0.) This must occur. Fenni thought this was f3-decay..

How did he incorporate this idea imoquantum mechanics? In order to answer
this question. one can use the example of the well-known process in which an
excited atom relaxes to the ground state by emilting a photon. In order to treat
this problem. we first quantize the radiation field as we did in leclure 6. include
in the Hamiltonian the interaction between the quantized field and the electrons
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in the atom, set up a SchrOdinger equation, and solve it. Indeed, what Fermi did
was an extension of this procedure.

First, Fermi quantized the electron field and the neutrino field. He already
knew the quantization of the electron field, but he had to determine whether the
neutrino field was a boson or a fermion. However, since both the neutron and
the proton have spin 1/2, the angular momentum changes by integral values
in the transition from the neutron state to the proton state. From this and from
the conservation law of angular momentum, it is inferred that the value of the
total angular momentum of the emitted electron and neutrino also must be an
integer, and therefore in order to obtain an integral value when combining with
the electron angular momentum, the spin of the neutrino is required to be half
integral. Fermi assumed that the spin of the neutrino is 1/2 because it is the
simplest choice. Then the neutrino satisfies the Dirac equation, and in order to
avoid the difficulty of negative energy, it must be a fermion.

After finding the equation and statistics satisfied by the neutrino, the quanti
zation of the field is straightforward. Also, the form of the interaction between
the electron-neutrino field and the nucleon is restricted by the requirements of
covariance and of charge conservation. The interaction energy should contain
the components of isospin P~ = (?~) and p'I = (~-d). Otherwise, the matrix
element of the interaction coupling the neutron state and the proton state would
be zero, and the transition neutron state -- proton state would not occur. I
shall just show you what Fermi wrote down as the simplest interaction energy
satisfying these conditions:

g L V(XK) = g L [~(pt - iP'k) ljIt(XK)ep(XK)+
K K

~ (pt + iP'k) ept(XK)ljI(XK)]. (10-17)

Here ljI (x) is the wave function of the quantized electron, ep (x) is the wave
function of the quantized antineutrino, and both of them have four components
that satisfy the Dirac equation. The notation ljI t (XK )ep (XK ) or ep t (XK ) ljI (XK )

means L~=I ljIJ(XK)epcx(XK) or L~=I ep~(XK)ljIcx(XK) ; XK, pt, P'k, need
less to say, are the spatial coordinates and isospin of nucleon K; and g is the
coupling constant.

In the back of Fermi's mind when he chose (10-17) as the interaction energy
was the analogy with the radiation field. In the case of a charged particle and
the radiation field, the interaction is e LK V(XK), where V(XK) is the potential
of the electric field describing the radiation field as long as the velocity of
the particle is smaller than the velocity of light c. Fermi's equation (10-17)
generalizes this to make it applicable to the case of isobaric nuclei. Namely,
in (10-17) the products ljIt(XK)ep(XK) or ept(XK)ljI(XK) are used instead of
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V (XK ) for the case of the charged particle and the radiation field. This is because
only one particle, the photon, is associated with the radiation field, whereas
two particles, the electron and the neutrino, are associated with the field for 13

decay. Furthermore, the expressions (pt -iP'k )/2 and (pt +i P'k )/2 in (10-17)
correspond to the transitions neutron __ proton. Indeed, from (10-8) we find
(pt - iP'k)/2 = (?g)K and (pt + iP'k)/2 = (g~)K' which correspond
to the matrices for the transitions neutron ~ proton and proton ~ neutron,
respectively.

We considered the case where Z = Zo - I, but for Z = Zo + I, 13-decay is
also possible if energy allows it. The difference here though is that a positron
+e and a neutrino v are emitted. Indeed, for the case of 14C, 14N, and 140
discussed earlier, two types of 13-decay are observed: 14C ~ 14N and 140 ~
14N. The former is accompanied by electron emission and the latter by positron
emission.

Thus Fermi succeeded in introducing 13-decay into the framework ofquantum
mechanics. Pauli's concept of the neutrino was too far ahead of its time, but
triggered by Chadwick's discovery and Heisenberg's theory, it was taken up by
Fermi four years later. Therefore what Pauli called a "desperate remedy" was
in fact a promising one.

Stimulated by the success of Fermi's theory, there arose the idea that Fermi's
method might be applicable to the problem which Heisenberg avoided, namely
whether the exchange of some particle was responsible for the exchange force;
to realize this picture, the exchange of an electron-neutrino pair might be
used instead of the boson electron. However, these attempts all failed because
no one could account for the strong nuclear force observed in experiments.
To elaborate, the strength of the exchange force is proportional to the fre
quency of the shuttling of the particles, and therefore to get a strong exchange
force we need an extremely frequent shuttling of the electron-neutrino pair.
Then the probability of the electron-neutrino pair escaping from the nucleus
was proportionately large, and therefore the lifetime of the nucleus under
going 13-decay would become orders of magnitude shorter than is observed
by experiments.

Therefore, Yukawa arrived at the idea that there should exist a yet-to-be
discovered charged boson, the heavy quantum, and that this charged particle
shuttles between the neutron and proton. He concluded that if this particle has
a mass about 100 times as large as that of the electron, then the effective range
of the nuclear force is on the order of 10- 13 cm. From the analogy that the
force between charged particles is mediated by the electromagnetic field, he
thought that the nuclear force is mediated by an unknown field which might be
called the nuclear force field. When he adopted the Klein-Gordon equation as
the equation of this field, then instead of the Coulomb potential e2 / r for the
electromagnetic field, g2 e-Kr /r appeared, and from the de Broglie-Einstein
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relation, in place of the zero-mass boson (photon), which is the quantized
electromagnetic field, he obtained a boson of mass Kh/c for the nuclear force
field. As e2/r is the potential for the Coulomb force, g2e-·<r /r will be the
potential for the nuclear force, he thought, and calculated the boson mass by
putting 10-13 em for the force range I/K, obtaining 100 times the electron mass
that I mentioned above. Thus this boson is lighter than the proton but heavier
than the electron and much heavier than the photon. He therefore named this
particle the heavy quantum as opposed to the light quantum. Even Yukawa, it
seems, played with puns.

Further, Yukawa thought that this nuclear-force boson would decay into an
electron (or a positron) and a neutrino with a lifetime on the order of 10-6 s,
and heexplained the p-decay of nuclei as follows. In Fermi's theory the process
neutron ++ proton generates the electron-neutrino pair, and therefore we have
the difficulty of a short nuclear lifetime when this frequency increases. But in
Yukawa's theory, the process of neutron ++ proton is effected by the shuttling
of the nuclear-force boson, and p-decay occurs during this process when the
boson--on a lark--breaks down into an electron and a neutrino. If this is rare,
then p-decay seldom happens, and therefore we need not worry about a brief
nuclear lifetime.
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You may worry about the next point. Namely, if the nuclear-force boson
shuttles between the nucleons with such high frequency necessary to explain
the large nuclear force, then the probability that the boson itselfescapes from the
nucleus also becomes large, and the nucleus may be observed to disintegrate,
emitting this boson. The answer to this is quite simple. This boson has a mass
100 times as large as that of the electron so that its me2 is 108 eV. Therefore,
unless this large energy is supplied, it cannot come out of the nucleus. Such
a highly excited nucleus does not naturally form, and particle accelerators of
such high energy were not known at that time.

However. among the cosmic rays, there are many particles with kinetic energy
on the order of 108 eV. If such a particle collides with an atomic nucleus, then
possibly the nuclear-force boson will be knocked out of that nucleus. Therefore,
Yukawa suggested that this particle may be discovered among cosmic rays.
In 1936, a year after Yukawa's paper appeared, Anderson and Neddermeyer
discovered among cosmic rays a particle which resembled that described by
Yukawa. This particle was named meson (intermediate particle).4

By the way, I might mention here that isospin plays an important role in
Yukawa's theory also. Yukawa used for the interaction energy of nucleons and
the nuclear force field

as suggested by Fermi's equation (10-17). Here U (XK) is the quantized nuclear
force field, and it is a complex wave which satisfies the Klein-Gordon equation
just like Pauli and Weisskopf's tf/ (x). discussed in lecture 6. If we use the two
real fields U~ and U'I such that

I
U = -(U~ - iU'I).

2

then (10-18) can be rewritten as

( 10-19)

g L ~ [P~U~(XK) + PkU'I(XK)] '
K

( 10-18')

and as you see, in both (10-18) and ( 10-18') isospin plays a role. Furthermore,
the exchange force also acts between two protons and between two neutrons,
and therefore it was necessary to postulate the existence of a meson which is

4. This particle was actually a muon which has a larger penetrability. The pion was discovered
in cosmic rays by Lattes. Muirhead. Occhialini. and Powell in 1947 (Lattes C M G. Muirhead H.
Occhialini G P S. and Powell C F 1947 Processes Involving Charged Mesons Nature 159694-698).
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also electrically neutral. In order for this exchange force to be identical to the
exchange force between a neutron and a proton in the ifJ~ state, we must use
instead of ( I0-18')

g L ~ [P~U~(XK) + PkU'I(XK) + P~U«XK)] =
K

I
g L 2 (PK • U(XK». (10-18")

k

where UI; (XK) is the field for a neutral meson. (Here UI; (XK) is real in order
for the particle to be neutral.) In this last formula U is considered to be a vector
in ~rg space, and this allows us to think that the nuclear-force boson also has
the new fifth degree of freedom. If we adopt this interpretation, then instead of
an isospin of 1/2 for nucleons, the isospin of the nuclear-force boson is I. And
the ~ -component of this isospin can take the three values + I. 0, -I, where +I
indicates a positive meson, 0 a neutral meson, and -I a negative meson. This
corresponds to the case of nucleons for which the ~ -component of isospin + I/2
signifies the neutron state and -1/2 signifies the proton state. If we examine
(10-18"), we see further that ~ 17~ space is completely isotropic in the meson
theory also. In this sense, this space and isospin, which is defined in this space,
have acquired an even deeper fundamental meaning.

Yukawa published his idea on the origin of the nuclear force in 1935; for a
while it did not attract attention. For example, Oppenheimer did not agree with
Yukawa's view, even after Anderson's discovery. Meanwhile, Yukawa's group
clarified and extended his idea, and by considering the vector field rather than
the original scalar field, they attempted to explain the term containing (UK· UL)

in the nuclear force and to explain the origin ofthe anomalous magnetic moment
(neither of which had been explained using a scalar field) of nuclei and showed
that they can be explained qualitatively.

In the meantime in Europe, ideas like Yukawa's occurred to several people
in order to relate the particle discovered by Anderson to the nuclear force, and
those people, without knowing Yukawa's work, began to work out a similar
theory. They were surprised to learn that Yukawa had already published his
ideas and that Yukawa and company were trying to do the same thing as they
were doing. For them, it seems the surprise of discovering Yukawa was greater
than the surprise of discovering the meson itself.

I was in the University of Leipzig (where Heisenberg and Hund were) from
1937 to 1939, and there I heard that until that time the Proceedings of the
Physico-Mathematical Society of Japan, which were donated by Japan, were
not read by anybody and were put into the book stacks immediately after
their arrival. However, ever since Yukawa's paper appeared, the journal was
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displayed in the physics department library, and the pages of the papers by
Yukawa and company were stained by readers' hands.

The reason why Yukawa's idea of the heavy quantum did not attract attention
was partly because the journal was obscure, but also partly because Yukawa's
idea was too far ahead of its time, just like Pauli's concept of the neutrino.
Indeed, Bohr came to Japan in 1937 and heard about Yukawa's work, but he
apparently did not show much interest in the theory. Also, Heisenberg, who
in his paper referred to the idea that behind the exchange force is a shuttling
boson electron with spin zero, proceeded in the direction which was away from
that very idea. It seems to me, after considering all of these, that the reason
for this rejection is that although one wall after another was being removed
and although there were many new discoveries, there remained the stubborn
prejudice that there was a sanctuary inside nuclei, and the physics community
was allergic to new particles. I might note that the workplaces of Heisenberg,
Fermi, and Yukawa, who successively removed the walls of the sanctuary, get
farther and farther from Copenhagen where Bohr resided. This might mean that
Bohr's influence gets weaker as you move farther away.

Nevertheless, we cannot yet say that the nuclear sanctuary has been com
pletely eliminated by the progress from Heisenberg to Fermi to Yukawa. There
still is the remaining sanctuary, i.e., the difficulty of the divergence which does
not only pertain to the inside ofnuclei but also outside, clinging to all elementary
particles.s This wall of the sanctuary is infinitely high and is still forbidding the
entrance of people even today.

These were the developments behind Pauli's theory of spin and statistics.
I hope that I have delivered to you in this lecture the process by which

attitudes that were up-to-date in 1930 started to change drastically around 1932,
and towards 1940 the physicists' arena moved from atoms and molecules to
nuclei and further to elementary particles, and the groundwork was laid to
go very deeply into nature. Speaking of 1940, the Second World War erupted
in Europe in 1939, the previous year, and Japan made war on the European
powers in 1941. Therefore, from 1940, physicists in each country had to go
through hardship for some time, and it was not until the end of the war that the
theory ofelementary particles budded, stretched its stem and leaves, and finally
blossomed in full color.

5 Tomonaga is referring to the difficulty of infinite self-energies of particles. which he himself
(and others) helped overcome, for all practical purposes, by the renormalization theory



LECTURE ELEVEN

The Thomas Factor Revisited

Is Thomas' Theory Valid for Anomalous
Magnetic Moments?

From the previous lecture you probably saw that the history of physics had
its last climax before the war around 1940. I could end this long story at this
climax, but I feel that it is necessary to present the homework which Jensen left
for me in 1972, the year before last, when he came to Japan.

As I told you in lecture 9, the anomalous magnetic moment of the proton was
discovered in 1933, and that of the neutron was determined in the following
year. Today I would like to discuss what the Thomas factor would be for
these anomalous magnetic moments. I sketched Thomas' idea in the second
lecture. One day in the year before last, Jensen casually dropped by my house
(casually describes his attire: wearing sandals and without a tie) and asked me
whether he could start telling me a story from the history of physics. I said,
"Go ahead!" and he said, "You must know the Thomas factor," and the story
went on from there. According to Jensen, Thomas' theory made quite a splash
in Europe, and there was a hot debate over its correctness. At any rate, from his
theory, the factor of 1/2 required by experiment is definitely explained. But,
we must ascertain whether this factor of 1/2 actually validates Thomas' theory
or is simply a fortuitous agreement. If we compare the results from separately
applying Thomas' idea and the new quantum mechanics to anomalous magnetic
moments, then we shall know whether or not Thomas' idea is correct. This was
Jensen's proposal when he came to my house.

By the way, the basis for the application of quantum mechanics to the
anomalous magnetic moments had already been prepared by Pauli in 1933.
Also in 1933 Stem first measured the anomalous magnetic moment of the
proton, and in 1934 Rabi measured it more precisely. As I told you in lecture 9,
when Pauli visited Stem's lab, he firmly believed that the magnetic moment of
the proton was the normal value of eh/2rnp c, and it is a little peculiar that Pauli
had already published, as I shall tell you later, the tools necessary to attack the

184
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Figure 11.1 Llewellyn H lbomas (1903
1992).

problem of the anomalous value-which he did not believe-but in a way this
is very much like Pauli.

It has already been more than half a year since I talked in lecture 2 about the
Thomas factor so I repeat it here concisely in case you have forgotten. In the
explanation of alkali doublet terms, instead of considering that an electron is
revolving around the nucleus, we consider the coordinate system in which the
electron is at rest and the nucleus is revolving around the electron. (I call this
the electron rest system.) Then there will be a magnetic field at the electron's
position caused by the nucleus revolving around the electron, and the magnetic
moment of the electron surely interacts with the field, splitting the levels into
doublets. This was the explanation of the alkali doublet teons. However, as I
told you in lecture 2, if we do this. we get a value for the interval between
doublet tenns which is twice the experimental value.

11lomas solved this difficulty. According to him, the coordinate system in
which the electron is at rest and the nucleus is revolving is not as simple as
might naively be supposed. He noticed the necessity of carefully taking into
account the special properties of relativity, especially those of the Lorentz
transformation. If the electron is moving with a constant velocity, then the
electron rest sySlem is detennined simply by a Lorentz transformation, but if
the panicle has acceleration, we must take into account a variety of things. This
is the crux of Thomas' idea. ( glos.~ over the detail of Thomas' calculation
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in lecture 2 because it was "too laborious," but we cannot answer Jensen's
homework without it. Even though this may be a little bit complicated, please
follow me. After all, it is not bad to review relativity.

Probably you already know the Lorentz transformation very well, but let me
start from there.

Let us consider two arbitrary inertial frames I and I' and consider an
orthogonal coordinate system S fixed on I and another orthogonal coordinate
system S' fixed on I'; let the origin of S be 0 and its coordinate axes the
X, Y, Z axes and the origin of S' be 0' and its coordinate axes the X', y', Z'
axes. Let us examine some event from these two inertial frames, such that it is
observed at time t at the point (x, y, z) in the I frame, and at time t' at coordinates
(x', y', z') in the I' frame. Since in both the I frame and the I' frame the origin of
coordinates and the zero point of time can be chosen arbitrarily, it is convenient
to define them such that at the instant when t = t' = 0, 0 and 0' are coincident.
Then between the sets of variables {x, y, Z, t I and {x', y' , z', t' I, there exists a
homogeneous linear relation which satisfies

( II-I)

This equation (II-I) is a fundamental requirement of relativity, and when
{x, y, Z, tI and {x', y', z', t'l satisfy (II-I), then we say that these two sets of
variables are related by a Lorentz transformation. Here (x, y, z) and (x', y', z')
are "spatial" coordinates of the point where the event happened, and we
correspondingly call {x, y, Z, t I and {x', y', z', t'} the "space-time" coordinates
at which the event happened in each inertial frame.

We can choose the coordinate systems Sand S' on the inertial frames I and
I' in a variety of ways, and accordingly we may have a variety of Lorentz
transformations. It is therefore useful to separate them into nonrotational trans
formations and rotational ones.

Among the nonrotational Lorentz transformations, the well-known one with
the simplest form is

, x - ut
x = ,JI - u 2 jc2

y' = y, z' = Z, (11-2)

If we solve these, we obtain the reverse transformation

x' + ut'
x= ,

JI - u 2 jc2
y = y',

,
z = z, (11-2')

In order to consider the physical meaning of this transformation, we consider
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a fixed point P' on the I' frame and let its coordinates based on the S' system
be (x~" Y~" z~,). We then see from (11-2) that its coordinates based on the S
system viewed from the I frame are

These relations may be rewritten as

, ,
yp' = Yp', Zp' = zp'.

,
yp' = Yp',

,
Zp' = zp',

and we see that the point P' viewed from the I frame is at the position

(11-3)

at time t. Therefore, as seen from the I frame, point P' is moving along the
X-axis with a velocity Vp' = (u, 0, 0), and there is a Lorentz contraction with
the factor J I - u2 / c2 along the X-axis. If as a special case we take P' as the
origin of the S' system, then its coordinates seen from the I frame are

(XO', YO', zO') = (ut, 0, 0),

and it is also moving along the X-axis with a velocity

VO' = vp' = (u, 0, 0);

if we consider a vector a'p', its components

(xp' - XO', yp' - YO', Zp' - zo')

(11-4)

(11-5)

with respect to the S coordinates in the I frame are related to those of the S'
system by

xp' - Xo' = JI - u2/ c 2 (x~, - xc, )
, ,

yp' - Yo' = Yp' - Yo', ,
Zp' - ZO' = zp' - zo,.

(11-6)

Here also, the x-component is Lorentz-contracted.
Next let us take point P' of (11-3) on the X'-axis. For this point, since

y~, = z;V = 0, yP' = Zp' = 0, and therefore if we look at the X'-axis in
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the [' frame from the [ frame, then it is parallel to the X-axis. Similarly, if we
look at the Y'-axis of the [' frame from the [ frame, then it is parallel to the
Y-axis; and likewise for the Z'-axis and the Z-axis.

So far we have examined how a point, a vector, and the coordinate axes
fixed on the [' frame appear as seen from the [ frame. Conversely, how do a
point, a vector, and the coordinate axes fixed on the [ frame appear from the ['
frame? We can consider these similarly using (11-2'). The conclusion is that if
we look at points fixed on the [ frame from the [' frame, they all move along
the X'-axis with velocity -u, and likewise vectors fixed on the [ frame are
moving parallel to the X'-axis with a velocity -u, and their x'-components are

Lorentz-contracted by J I - u 2/ c2• Furthermore, the coordinate axes X, Y, Z
seen from the [' frame are parallel to the X', Y', Z' axes respectively. If we
express these in formulas, we have

corresponding to (11-3),

(xb, tb, zo) = (-ut', 0, 0)

corresponding to (11-4),

va = v~ = (-u,O,O)

corresponding to (11-5), and

, ,
YP - Yo = YP - YO, ,
zp - zo = zp - zo

(11-3')

(11-4')

(11-5')

(11-6')

corresponding to (11-6).

Therefore, for the Lorentz transformation in the form of (11-2) or (11-2'),

each of the three coordinate axes in the [ frame is parallel to its counterpart in
the [' frame. (This statement is a bit sloppy, and the real meaning of it is that,
if you view other coordinate axes from one system, then they are parallel to the
coordinate axes of its own, but it is usually convenient to be a bit sloppy.) In this
sense, this transformation certainly does not include rotation of the coordinate
axes and therefore is a nonrotational transformation. The transformation with
coordinate axes parallel is also realized by the cyclic permutation of x, y, z in
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(11-2). Since these transformations are special ones with the simplest form,
they are often called special Lorentz transformations.

Since in a special Lorentz transformation the X-axis and X'-axis, the Y-axis
and Y'-axis, and the Z-axis and Z'-axis are parallel to each other, one might
think that if the components (ax, ay, az) in the S system of a vector a in the /
frame and the components (a~, a~, a~) in the S' system of the vector a' in the
/' frame have the relation among them ax : ay : az = a~ : a~ : a~, then a and
a' are parallel. (This is also a sloppy way of saying it.) However, this is not the
case. For as is clear from (11-6'), if we view a from the /' frame, its components
are (JI - v 2 jc2 ax, av , az), and the vector (a~, a~, a~) in the /' frame which
satisfies the relation a~ : a~ : a~ = ax : ay : az are never parallel unless either
ax = a~ = 0 or ay = a; = az = a~ = O. However when the coordinate axes
of Sand S' are parallel, it very often occurs that the vector a in the / frame and
the vector a' in the /' frame satisfy ax : ay : az = a~ : a~ : a~, and they play
a special role, so it is convenient to say they are "quasi-parallel" to each other.
In general, a Lorentz transformation becomes a Galilean transformation in the
limit that J I - v 2 j c2 approaches I, and in this limit, of course, quasi-parallel
is the same as parallel.

I told you earlier that a special Lorentz transformation is nonrotational, but let
us proceed to a more general nonrotational transformation. This transformation
is realized when instead of the orthogonal coordinate systems Sand S' taken
on the / and /' frames (these are the coordinate systems for which the X and
X' axes are parallel, the Y and Y' axes are parallel, and the Z and Z' axes are

- -I -
parallel), we take new orthogonal coordinate systems Sand S such that the X

-I - -I -

and X axes are quasi-parallel, the Y and Y axes are quasi-parallel, and the Z
and Z' axes are quasi-parallel. According to the definition of quasi-parallelism
which I mentioned earlier, if the X axis and the X' axis are quasi-parallel, that
means that the direction cosines of the X axis with respect to the X, Y, Z axes
and the direction cosines of the X' axis with respect to the X', y', Z' axes are
equal, and the same can be said for the Y axis and the Y' axis and for the Z axis

-I - -I

and the Z axis. Therefore, we can obtain the axes for the Sand S systems by
making the same rotation of the axes of the S system and the S' system. If we
take the space-time coordinates of some event in the S system as {x, y, E, t} and
in the s' system as {x' ,y' ,2', t'}, then we call the transformation between them
{x, y, E, t}~{x', y', 2', t'} a nonrotational Lorentz transformation. In this case
--- - -1-1-1 -I

the X, Y, Z axes of the S system and the X , Y , Z axes of the S system are
quasi-parallel, and in this sense we can consider Sand s' to be nonrotationally
related. Needless to say, in the limit in which we can regard J I - v 2 j c2 as I,
- -,
Sand S are literally parallel.

- -,
Furthermore, if the axes of the S system and the S system are quasi-parallel

and if the vectors a = (ax, ay , az) in the S system and a' = (a~, a~, a~) of
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-,
the S system satisfy the relation ax : av : az = a~ : a~ : a~, then a and a'
are quasi-parallel. We omit the proof because it is trivial. For these reasons, the
quasi-parallelism of a' and a' can be defined without using coordinate systems
which are parallel to each other; it is a concept which is independent of the
choice of the S and the s' systems, and therefore it is invariant with respect to
the transformation of coordinate systems.

What then is the general form of a nonrotational Lorentz transformation? If
we do this for the general form, the story gets long and complicated with the
risk of losing the essence of the problem. Therefore, we shall just generalize
it to the degree necessary for later discussion. As I told you, the axes in the S
system and those of the s' system are obtained by making the same rotation
of the axes of Sand S' used in (11-2) and (11-2'). Therefore, we consider the
rotation of the X and X' axes and the Yand y' axes around the Z and Z' axes by- -,
an angle ex and make it the S system and the S system. See figure 11.2. Then
the point given by coordinates (x, y, z) in the S system is given by the spatial
coordinates

x = x cos ex + y sin ex

y = -x sin ex + y cos ex

z=z

in the S system, and the point (x', y', z') in the S' system is given by

x' = x' cos ex + y' sin ex

y' = -x' sin ex + y' cos ex
-, ,z = z

(11-7)

(11-7')

in the S' system. (Needless to say, t = t and t' = t'.) On the other hand, (x, y, z)
and (x', y', z') are related by (11-2) and ( 11-2'), so after a little calculation we get

Y, Y'

y. y'

x, x'

'1<::.. --1. X. x'

Figure II 2



The Thomas Factor Revisited 191

x' = 1 I cos
2 a + sin

2 a I x-
)1 - v 2/c2

1 I -Ilsinacosa. y - vcosa ·t
)1 - v 2/c2 )1 - v 2 /c2

y' = -I I - II sin a cos a . x +
) I - v 2 / c2 (11-8)

1 I sin2 a + cos2 a I y + v sin a . t
)1 - v 2/c2 )1 - v 2/c2

-/ , z = z = z

~{cosa • x - sina • y}
(

The reverse relations that give x, y, 2, t in terms of x',y', Z', t' can be obtained
by exchanging x' andx, y' and y, 2', and 2, and t' and t, and replacing v with -v.

From the transformation (11-8) or from its inverse transformation, we im
mediately see that the coordinates of A' (a' is the origin of coordinates of the
S' system, and it is at the same time the origin 6' of the S' system) seen from
the S system are

xo' = vcosa· t, Yo' = -v sina· t, 20' = 0,

-,
and the coordinates of a seen from the S system are

xo=-vcosa.t', yo=vsina.t', 20=0.

Therefore the velocity of A' seen from the S system is

vo' = (vcosa, -vsina,O),

and the velocity of a seen from the S' system is

Vo = (-vcosa, vsina,O).

Therefore, we finally have

- -,
vo' = -vo

(11-9)

(11-9')

(11-10)

(11-10')

(II-II)
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and

Ivo,1 = Iv~1 = Ivl· (II-II')

It is a characteristic of the nonrotational Lorentz transformation that YO' and v~
are antiparallel. (In a special Lorentz transformation, in addition to this, Yo' is
along the direction of one of the X, Y, Z axes, and v~ is directly opposite to it.)

Finally let us consider the most general Lorentz transformation, namely the
rotational Lorentz transformation. The rotational Lorentz transformation is a
transformation in which the axes of the coordinate system of the [frame and the
axes of the coordinate system on the [' frame are not quasi-parallel to each other.
Let us take as their coordinate systems 5 and 5', respectively. It is quite obvious
that we can take 5 = 5 without loss of generality, and therefore we shall take it
as such. We then see that the coordinate axes of the 5 system are X, v, Z, but

the coordinate axes of 5' are given by some rotation of the coordinate axes X',-, -, -,
Y , Z of the S system. Just as before, we shall limit ourselves to the rotation

-f -I

of the S system around the Z axis by an angle f3. Then the coordinates of

~e ~in! which were (x', y', 2') in the 5' system are given in the 5' system by
(X"', y', 2')

=, f3 -, . f3 -, =, . f3 -, f3 -, =, -,x = cos . x + SIn . Y ,y = - SIn . X + cos . y ,Z = Z .

Obviously,

=, -f
t = t .

(11-12)

(11-13)

Therefore, if we eliminate x', y', 2', and t' from (11-12) and (11-8), then we
obtain the formulas which express {:;', y', z', t'l in terms of {x, y, z, rl and their
inverses. Let us forget about writing these formulas because they will not be
used explicitly. In fact, without using these formulas, we can determine the
coordinates of the origin 0 of the 5 system as seen from the 5' system (which

is the same as the origin of the 5' system) and the origin 0' of the 5' system
- -seen from the S system. For example, the coordinates of 0 seen from the S

system are already given by (11-9'), and we immediately obtain

:;~=-vcos(a+f3).t', Yo=vsin(a+f3).t', z~=O (11-14)

by substituting it into (11-12), and therefore seen from the 5' system, 0 is
moving with the velocity

~~ = (-v cos(a + (3), v sin(a + (3), 0). (11_14')
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Y, Y'

x, X'

x,x'

Figure II 3

It is clear from figure 11.3 that the angle a + f3 appears in this formula.
Furthermore for the origin 0' of the 5' system seen from the S system, we
can apply (11-9) and (II-10) directly, obtaining

i'o' = v cosa . t, Yo' = -v sina· t, 20' = 0,

and therefore it is moving with the velocity

VO' = (vcosa, -vsina,O).

Note in this case that

If we compare (11-14') and (11-15'), we find

- ~o' = cosf3· va' + sinf3· va'
x x \

- ~o' = - sin f3 .va' + cos f3 .va' .
\ X \

(11-15)

(II-IS')

(11-16)

(11-17)

Since the coordinate axes of the 5' system are obtained by rotating those of the
S system by an angle f3, these results are well expected. Although VO' = -~o
is not followed in this case,

(II-IT)

holds.
We now have three transformations: the special Lorentz transformation, the

nonrotational Lorentz transformation, and the rotational Lorentz transforma
tion. We have considered only rotations around the Z axis (and the Z' axis).
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We can prove that all the Lorentz transformations are exhausted if we consider
rotations around all axes. I told you that (11-16) is characteristic of rotational
Lorentz transformations and ( II-II) is characteristic of the nonrotational trans
formation. If we limit ourselves only to rotation about the Z axis (and the Z'
axis), then we can say the converse, that is, that if (\ I-II) holds, then the
transformation is nonrotational. However, for the case of the general rotation,
even if (\ I-II) holds, still the transformation could be rotational. But let us not
go into that here.

It took us a long time to review Lorentz transformations, but I thought that
without this preparation, the crucial property of the Lorentz transformation
which causes the Thomas factor could not be understood. Then what is it which
causes the Thomas factor?

Let us consider three inertial frames I, I', I" and consider the coordinate
systems S on I, S' on I', and S" on I". Furthermore, let us assume that the axes
of S and the axes of S' are quasi-parallel and that the axes of S' and the axes
of S" are also quasi-parallel. (I would like to remind you here that although we
use a notation S, S', or S" without bars for the coordinate system, this does not
necessarily mean that Sand S' or S' and S" are related by a special Lorentz
transformation.) In this case, are the coordinate axes ofS and the coordinate axes
of S" mutually quasi-parallel? The answer to this question is, "Of course, yes,"
for the Galilean transformation. However, for a Lorentz transformation, the
answer is, "It ain't necessarily so." In other words, even if the transformations
{x, y, Z, t}~{x', y', z', t} and {x', y', z', t'}~{x", .v", z", t"} are both nonrota
tional, in general the transformation {x, y, z, t}~{x", .v", z", t"} is rotational,
except for the special case.

Since the general argument is too complicated, let us show this fact for
the following simplified example. First, let the transformation {x, y, Z, t}~

{x', y', z', t'} be

,
y = y,

,
z = z, (\ 1-18)

In this case, the coordinate axes in the S system and in the S' system are not
only quasi-parallel but also parallel. Next let us consider the transformation
{x', y', z', t'}~{x", y", z", t"}.

" ,x =x,
" y' - ut'

y = ,
JI - u2 /c2

" ,z = z, (\ 1-19)

In this case also, the axes in the S' system and those in the S" system are not only
quasi-parallel but also parallel. We can easily see by eliminating {x', y', z', t'}
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from (11-18) and (11-19) that the transformation {x, y, z, t}~{x", y", z", t"}

is given by

"z = z,

x - ut

(11-20)

We immediately see from (11-20) that if we take (xo", Yo", zo") as the coordi
nates of the origin 0" of the 5" system seen from the 5 system, then they are
given by

xo" = ut, Yo" = /1 - u2/c2 vt, ZO" = 0, (11-21)

and if we take (x~, y~, z~) as the coordinates of the origin a of the 5 system
seen from the 5" system, then they are

x~ = -)1 - v 2/c2 ut", y~ = -vt", Zo = O. (l1-2\')

Therefore, if we let the velocity of 0" seen from the 5 system be WO" and the
velocity of a seen from the 5" system be wo'then they are

WO" = (u, /1 -u2 /c2 v, 0)

Wo = (-/1 - v 2/c2 u, -v,O).

(11-22)

(11-22')

Obviously WO" =p -WOo However, their magnitudes are equal and are
given by

(11-23)

As I told you earlier, the fact that WO" =P -woclearly shows that the transfor
mation {x, y, Z, t}~{x", y", z", (I} is rotational.

Then what is the rotation? In other words, by how much are the coordinate
axes in the 5" system rotated from those of the 5 system. More rigorously, if
we consider the X-axis in the I frame, which is quasi-parallel to the X" axis in
the 5" system, and the V-axis in the I frame, which is quasi-parallel to Y", then
by how much is the coordinate system S composed of the X, V, Z axes in the I
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frame rotated from the original S system? In order to answer this question, we
proceed as follows.

First of all, the axes in the S system considered in the I frame are quasi

parallel to those in the S" system, and therefore the transformation {x, y, Z, t}~
{x", y", z", t"} is nonrotational. [In this case according to (11-20), z = z".)
Therefore, between the velocity of 0" seen from S and the velocity of a seen

from S" is the relation (II-II). Thus if we take the velocity of a" as viewed
from S as wO", then

- "WO" = -wo (11-24)

holds. On the other hand, as seen in figure 11.4, if the Ssystem is rotated by an

angle () from the S system, then there are the relations between the components

ofwo", i.e. wO" and wO", and the components ofwo", i.e. wO" and wO",
x v x y

Wo~ = wo; cos () + wo~ sin ()

wo~ = -wo; sin () + wo~ cos ().

(11-25)

(In our case, it suffices to consider rotation only around the Z axis because

z = z".) Therefore, by expressing the left-hand side by the components of w~
using (11-24), and using (11-22) and (11-22'), we obtain

JI - v 2 /c2 u = u cos() + )1 - u2 /c2 v sin(),

v = -u sin () +JI - u2 / c2 v cos ()

From these equations we immediately have

y

"""------'----_x

Figure 11.4

(11-26)



The Thomas Factor Revisited 197

(11-27)

Finally we arrive at the conclusion that the coordinate axes of the 5" system
are rotated by the angle () given by (11-27) around the Z axis (= Z" axis) of
the 5 system. (More accurately, the coordinate axes of the S system, which are
quasi-parallel to the axes of the 5" system are so rotated from the 5 system.) We
have now seen that if we make a nonrotational transformation twice, the result
becomes rotational. It was on this point that Thomas focused his attention.

Let us now go into Thomas' theory. Here Thomas introduced the concept of
"proper coordinate axes of the particle." At the beginning of today's lecture, I
said, "the coordinate system in which the electron is at rest but the nucleus is
revolving"; I shall call this coordinate system in which the particle seems to be
at rest at the origin the rest system of the particle. In general, if the particle is
in uniform motion, then we can choose for its rest system the inertial system
which is moving with the particle at uniform speed having coordinate axes such
that the position of the particle is at their origin, and there is no problem. If,
however, the velocity of the particle is not constant but changes with time, then
we must take the inertial system which is moving with the particle's velocity
at each instant. So far, so good, but how do we choose the coordinate axes in
this inertial system? First of all, it is quite obvious to take the position of the
particle as the origin of coordinates for each instant. But how do we choose the
direction of the coordinate axes? Here a slightly complicated problem arises.
If we take the direction of the coordinate axes for each instant arbitrarily, then
there is no way to create a consistent theory. Therefore, Thomas proposed the
following method.

First we consider a rest system at an arbitrary instant and another rest system
at an infinitesimally later time. Thomas' idea is to take the axes ofthe latter such
that they are quasi-parallel to the axes of the former. He then takes successive
axes such that the axes of its rest system at one instant are quasi-parallel to
the axes of the rest system at an infinitesimally earlier time. If we do it this
way, once the motion of the particle is given and the initial axes are fixed, then
the directions of the axes at any moment thereafter are successively, uniquely
determined. When the axes of each instantaneous rest system are determined
this way, they are called the proper coordinate axes of the particle.

Since it is very complicated to discuss the general situation, we shall consider
a simple case where (11-18) and (11-19) and the various relations derived from
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them can be used. Let us consider the laboratory frame as the I frame and
consider the coordinate system S fixed on it. Let us assume that the particle
is instantaneously at the coordinate origin a at time t = O. Furthermore, if
the velocity of the particle at this time is D, then we take the X-axis along the
direction of D. The Y and Z axes can be taken arbitrarily. We now consider the
S' system, which is related to this laboratory system by Lorentz transformation
(11-18), namely

,
x

x - ut
y' = y,

,
z = z, (11-28)

In this system the origin 0' coincides with a at time t = 0, and the particle
which is moving at this instant with velocity D = (u, 0, 0) in the S system is
at rest instantaneously at 0' in the S' system. Therefore, it is obvious that the
S' system is the rest system for the particle at time t = O. It is a rest system in
which the X', Y', and Z' axes are respectively parallel to the X, Y, and Z axes.

Next we consider the coordinate system S" which is on the I" inertial frame,
whose meaning we consider later, and assume that the transformation between
the S" and S' systems is given by (I 1-19). We just use ~ v instead of v forthe
convenience of later discussion. Therefore, the transformation is

" ,x =x,

z" = z',

y' - ~v· t'
y"=

}I - (~v)2/c2'

t' _ 6.u y'

t" = -.jr.I=_=(=;=~=)2;<=/=c~2 (11-29)

We now consider that, as seen from the laboratory system, the particle is at the
origin 0" of the S" system and is moving with the same speed at the instant
t = ~t. This means that at the instant t = ~t, the S" system is the rest system
of the particle. We thus have given the meaning of S". How then is the particle
moving? In other words, as seen from the laboratory, where is the particle and
with what speed is it moving at time t = ~t? Since we considered the particle
to be moving with 0", it must have the position and velocity of 0" as seen from
the laboratory system S.

Now recall (11-21). The coordinates (xo", Yo", zo") of 0" seen from the S
system are given by (11-21). We here need to use ~t instead of t, however.
Then at this instant, the coordinates of the particle are given by

(11-30)

As for the velocity of the particle, it is
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w = (u, JI - U2/C2 ~v, 0), (11-31)

using (11-22) Also remembering that the velocity of the particle was u =

(u, 0, 0) at t = O. the particle has changed its velocity by (0, JI - u 2/c2 •

~v, 0) perpendicularly to u during the time M. Therefore, if we make M
infinitesimally small, the acceleration of the particle a is given by

a=(O,a,O), a=JI-u2/C2~~, a..lu. (11-32)

Because M is infinitesimally small. ~v is also infinitesimally small. and
therefore we can ignore the v 2 term in (11-23) and obtain

Iwl = lui = lui. (11-33)

Therefore. the direction of the velocity of the particle changes between t = 0
and t = ~t, but its magnitude remains constant.

Now the transformation from the S' system to the S" system is nonrotational.
(In our case, the coordinate axes of the S' system and those of the S" system
were not only quasi-parallel but also parallel.) Therefore, the S" system is not
only the rest system for the particle at the instant t = ~t. but also its axes
are the proper coordinate axes for the particle. Now by how much are the
proper coordinate axes in the S" system rotated with respect to the axes of the
laboratory system S? The answer is given by (11-27). Here we write ~ v for v
and, correspondingly, ~() for (). Furthermore, since ~v is infinitesimally small,
we can ignore the term with (~v)2. We then obtain

(11-34)

from (11-27), and using (11-32).

(11-35)

is derived. That is to say, the coordinate axes of the SI! system. namely the
proper coordinate axes of the particle, are rotating with an angular velocity Q

around the Z-axis.
In deriving this conclusion we used for the rest system S' at the initial instant

t = 0 coordinate axes that are parallel to the axes of the laboratory system
S. [The transformation (11-28) was a special Lorentz transformation.] Instead
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of the coordinate axes of S', we could have started with those of S', which is
rotated from S' by an angle Ct around the Z-axis, and the conclusion would have
been the same. This is because in this case the proper coordinate axes of the S"
system used at the instant t = !:i.t are quasi-parallel to those of the S' system.
Therefore, S" is obtained by rotating the axes of the S" system by the angle Ct,

and the relative relationship (e.g., the angle !:i.() between them) between the axes
-! -II

of Sand S as seen from the S system is identical to that between the S' and
S" axes. We can therefore regard the angular velocity of the proper coordinate
axes to be independent of the proper coordinate axes which were assumed at
the initial instant, and therefore the angular velocity of the proper coordinate
axes is determined only by the velocity and acceleration of the particle, and it
is an invariant quantity, independent of the choice of coordinate axes. In other
words, it is an intrinsic quantity of the motion of the particle.

So far, we have examined two instants, t = 0 and t = !:i.t, but we can discuss
the same thing for instants t = !:i.t and t = 2!:i.t, t = 2!:i.t and t = 3!:i.t, ... If
in these cases we take the acceleration a to be perpendicular to the velocity u
at every instant and the value of lal to be constant, then the successive proper
coordinate axes will continue to rotate according to (11-35). For this reason, the
proper coordinate axes seen from the laboratory system will continue rotating
with angular velocity (11-35) although from one instant to the next they are
always taken to be quasi-parallel. Actually, the rotation given by (11-35) is not
the rotation of the proper coordinate axes themselves seen from the laboratory
system but the rotation of three vectors in the laboratory system assumed to
be quasi-parallel to the proper coordinate axes. However, we can prove for the
case u2/c2 « I, such as for an electron in an atom, that we can regard (11-35)
to be the rotation of the proper coordinate axes themselves. (I skip this proof.)

In this approximation, furthermore, we can use

and obtain

ua
[2=--2'

2c
(11-35')

Needless to say, the motion with a ..1 u and a = constant at any instant is uniform
circular motion, and its angular velocity is

and its radius is

a
lV =-,

U
(11-36)
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u2
r - - (11-37)

a

Comparing with this w, we get

(11-35")

and indeed the rotation of the proper coordinate axes is the outcome ofrelativity.
For simplicity we assumed above that the particle is executing uniform

circular motion. We can show that in general, if the velocity and acceleration of
the particle are given, then the angular velocity of the proper coordinate axes
can be determined. According to Thomas' calculation, if the velocity is u and
the acceleration is 8, then the angular velocity is

I
fi = --u x 8.

2c2
(11-38)

Our (11-35') is a special case of this, but for further discussion it is more
convenient to use the general formula (11-38). [Formula (11-38) is nothing
but (2-14) of lecture 2.]

Now we will finally go into the story of spin. First let us start from the classical
motion of a top. As a concrete example, let us consider a ship cruising with
a gyrocompass. In this case, if there is no torque operating on the top in the
gyro, the rotational axis of the top is always pointing in one direction in space
regardless of the acceleration with which the ship is moving. When I say a
certain direction in space, I mean with respect to the coordinate axes fixed to
the stars of the night sky. If there is a torque operating on the top, as you know,
the top undergoes a neck-precession, the head of the top describing a circle.

Let us consider the spin of a particle from this analogy and do so relativis
tically. If we are to use relativity, we cannot assume the uniqueness of the
coordinate axes fixed in the star system as in the classical theory. What shall
we do? Thomas thought that he should use the proper coordinate axes which he
introduced. Tentatively he considers that a particle with spin is rotating like a
top. Now the motion of the particle may include acceleration in the laboratory
system just like a gyrocompass on a ship. If there is no external torque on the
rotational axis ofthe particle, then the spin of the particle (namely the rotational
axis) always maintains a constant direction with respect to the proper coordinate
axes. This was Thomas' assumption. This idea is a natural result of the analogy
with the ordinary top, namely, just as in relativity the proper time intrinsic in the
motion of the particle plays the role of absolute time in Newtonian mechanics,
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the proper coordinate axes intrinsic in the motion of the particle play the role
of coordinate axes fixed in the star system.

What conclusion emerges from this idea? According to Thomas, if there is
no torque on the particle and therefore if the spin maintains a constant direction
with respect to the proper coordinate axes, then as seen from the laboratory
system, it precesses with the angular velocity (11-38). This precession occurs
without torque. This is the conclusion which Thomas drew, and therefore it is
often called "Thomas precession."

Then what happens if there is a torque? For a classical top, we can actually
think about such torque if we use a bar magnet with magnetic moment M (here
we measure the magnetic moment in the ordinary units) for the axis of the top
and spin it in a magnetic field H. In this case, if the torque is not too large, the
rotational axis of the spin starts to slowly precess around the magnetic field.
Please look at figure 11.5. According to the classical mechanics of the top, the
angular velocity of precession is given by

SOH = -MH. (11-39)

Here S is the angular momentum of the precession of the top (S is measured in
the ordinary units).

Now in order to apply this classical conclusion to a particle with spin 1/2,
we should use for Sand M

I
S =-11

2

-e
M=-gS.

2mc
(11-40)

Z

tH
- - -- ----~, ,

\ )

Figure 115
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For an electron g = gO = 2, but for a proton g 'I go. We often call Dirac's
theoretical value

-e
MD= -goS

2mc
( 11-40')

the normal spin magnetic moment, but for g 'I gO it is convenient to separate
M into normal and abnormal parts like

M = MD+M' (11-41)

(for the neutron MD = 0). Needless to say, for the proton we must use the
proton mass mp for m on the right-hand side of the second formula of (11-40),
and the sign of e must be changed. For today's lecture, however, we shall denote
the mass as m without distinguishing the cases and always denote the charge
as -e.

Thus even if we are using the classical model of a top for spin, we should keep
in mind that (11-39) is valid with respect to the rest system of the particle and
with respect to the proper coordinate axes. Since the proper coordinate axes
themselves are rotating according to (11-38), the precession calculated from
(11-39) is not quite the precession seen from the laboratory system. Namely,
as a result of the rotation 0 of the proper coordinate axes, the precession
with angular velocity OH with respect to the proper coordinate axes will be
precessing with the angular velocity

(11-42)

seen from the laboratory system. Furthermore, we must take into account that
the magnetic field in the rest system is not only the external magnetic field H but
also the added internal magnetic field 1I given by Biot-Savart's law. Therefore,
(11-39) should take the form

and from (11-42)

SOlab = -M(H + 1I) + SO

is derived.
Now as for the acceleration of an electron in an atom, we have

-e
a=-E.

m

(11-43)

(11-44)

(11-45)
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(For the neutron, since e = 0,

a =0.

We shalI discuss this separately later.)
Substituting (11-45) into ( 11-38), we find

-eo = --2 (E xu).
2mc

On the other hand, since as I told you in lecture 2, fI is given by

IfI = -(E x u)
c

(11-45 )neutron

(11-46)

( 11-47)

[see (2-11) of lecture 2], we can write 0 [referring to (11-40') with gO = 2] as

-e Jl. I Jl.
0= -u= -Mou,

2mc 2S

and substituting this into ( 11-44), we obtain

SOlab = -MH - (M - ~Mo) fl.

(11-46')

(11-48)

From this final result we conclude the folIowing. First for an electron, since
M=Mo,

( 11-48)electron

Lo and behold, there is this correct factor of 1/2 in the second term on the
right-hand side! This means that for the external field H, the magnetic moment
acts like Mo, but for the internal field fI, it acts apparently like only (1/2) Mo.
This 1/2 is precisely the Thomas factor. The reason for the appearance of
this "apparent" 1/2 is that, as shown by (11-46'), the kinematical quantity 0
determined from the velocity and acceleration of a particle appears as if it
came from the interaction of Mo and fI in the case of a particle moving in the
Coulomb field.

Next, for the proton, using (11-41 ), we obtain

SOlab = -(Mo + M')H - (~MO + M') fl. (l1-48)prolon

Namely, the Thomas factor 1/2 appears for the normal part Mo of M but does
not appear for the abnormal part M'.
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Finally for the neutron, since a = 0, fi = 0, and because MD = 0, we obtain

Sfi1ab = - M'H - Mill ( 11-48)neulron

from (11-48) and (11-41 ).1 Therefore, in this case, the Thomas factor does not
appear at all. By the way, the relations of (11-48) which are valid for arbitrary M
are already in Thomas' paper. Therefore, he has already obtained the result for
the anomalous magnetic moment also. Equation (11-44), which we discussed
earlier, can be rewritten using (11-46), (11-40), and (11-47) as

e e ..q.
filab = -gH+ -(g - I)n,

2mc 2mc

and if we put g = gO, then (l1-48)electron can be rewritten

e e ..q.
filab = go-H + (gO - I)-n.

2mc 2mc

This is (2-18') of lecture 2.
We have spent a lot of time on the classical theory of spin so let us now move

on to the quantum theory.

At the beginning of this lecture, I told you that the quantum mechanical
treatment of the anomalous magnetic moments had already been prepared
by Pauli around 1933. This unfolded in the following way. As I told you in
lecture 3, the question why the electron has spin angular momentum 11/2 and a
magnetic moment -eh /2mc had been answered by the discovery of the Dirac
equation; in the second edition of Handbuch der Physik published in 1933,
Pauli discussed the Dirac equation in his article "The General Principles of
Wave Mechanics." He pointed out that the Dirac equation is not the only first
order, linear equation which satisfies Lorentz invariance and other relativistic
requirements. Namely, he noted that even if he adds a term, later called the
"Pauli term", to the Dirac equation given in Lecture 3, the equation satisfies
all the necessary requirements. However, if this term is added, the magnetic
moment of a particle differs from -e1l/2mc. He terminated the discussion
of this term with the following statement, which can be paraphrased: " ...
however, even if these terms are not added, the electron spin (or proton spin),
as well as its magnetic moment -eh/2mc, appears automatically. Hereafter,
we shall proceed without this term." This or proton spin shows that Pauli
prepared the manuscript for the Handbuch before Stem's experimental re
sult was obtained, and what he wrote here is consistent with what he said
to Stem.

I. Here we consider the neutron in atomic nuclei.
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Figu~ 11.6 Quo SIeT11 (IR88-I969)
ICourtesy of AlP Meggar; Gallcry of
Nobel LaIl~are~1

The Dirac equation in which the electric chargeofa particle is ~e was already
given in lecture 3. (3-20)

Here we put 1/J = e-iW'/~¢ and study the eigenfunctions ¢ of the stationary
state. Then as you know. W is the energy of this state. Here al. az. a3. Cf{) are
the 4 x 4 matrices given by (3-23). and as I told you there. it is convenient 10
use the 2 x 2 Pauli matrices

and the 2 x 2 matrices

1=(~ ~). o=(~ ~) (II-51)
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to write the Un as

UI = (0
0"1

U3 = (0
0"3

0"1)o '

0"3 )o '

U2 = (0
0"2

Uo _ (I- 0

0"2 )o '

~I)' (I I-52)

Also, it is convenient to wnte the four-component if> as composed of two
component quantities

The Dirac equation (11-49)D is then rewritten in the form of the simultaneous
equations

Pauli pointed out that even if a term of the form

( 11-49)p

. (0 iO"I)IUOUI = . ,
-10"1 0

is added in the brackets of (11-49)D, the equation satisfies the relativistic
requirements. Here (HI, H2, H3) are components of the magnetic field H acting
on the particle, (£" £2, £3) are components of the electric field E, and Lcyclic

means the addition of the terms over the cyclically permuted indices ( I, 2, 3),
(2, 3, I), and (3, I, 2). The matrices in (11-49)p are the six-vectors discussed at
the end of lecture 3, which are given explicitly as

I (0"1 0) I (0"2 0) I (0"3 0)-;-UOU2U3 = , -;-UOU3U \ = 0 ' -;-UOU\U2 =
I 0 - 0"1 I - 0"2 I 0 - 0"3

(II-54)

(0 i0"2) (0 i0"3)
iUOU2 = . 0' iUOU3 = . O·-10"2 -10"3
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The coefficient M' in (11-49)p is a constant which has the dimension ofmagnetic
moment.

As I told you earlier, the electron spin 11/2, magnetic moment -ell/2mc, and

the Thomas factor 1/2 all come out of the Dirac equation (11-53)0, but Dirac's
derivation is a little incomplete, so I would like to do it more rigorously. We
adopt Pauli's method used in the Handbuch, mentioned earlier, and approximate
(11-53)0 semirelativistically. By "semirelativistic" I mean that since W - mc2,

eAo, and eAr are each smaller than mc2, we can expand these quantities in
powers of 1/c, retain terms up to 1/c2, and neglect all the terms 1/c3 , 1/c4 , ..•

In order to do this calculation, it is convenient to put

(II-55)

Then first from (11-53)02 we obtain

(
3 )_ C +

if> = U r 7rr if> .
W +eAo+mc2 ~

Rewriting

considering that

eAo «mc2

and retaining up to the second-order terms of the approximation, we obtain

__ [I W + eAo - mc
2

] (~ ) +if> - -- - L Ur 7rr if> .
2mc (2mc)2 c r=1

Here the second term in brackets may appear negligible because it is a term with
1/c3, but we must retain this term for the reason you will see shortly. Now we
substitute this expression for if>- into the right-hand side of (II-53) 0,' Then
we have the equation satisfied by the two-component if>+, and we shall see that
this is the Pauli equation, which we discussed in lectures 3 and 7. Let us do this
calculation.

First we shall perform the aforementioned substitution. Then we obtain
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[ (
2) 3 31 W +eAo -me

RHSof(lI-53)D,= - 1- 2 LUr 7rr LUr 7rr
2m 2me

r=1 r=1

33]e 11 aAo +
----- U - U 7r

(2me)2 i ?; r aXr ?; r r if> .

Indeed, the tenn containing l/e3 has become a tenn with l/e2 because of
the factor c on the right-hand side of (II-53) D,' Thus we should not have
neglected this.

Next we use the fonnula

333

L urFr L urGr = L FrG r + i L UI (F2 G 3 - F3 G 2), (II-56)
r=1 r=1 r=1 cyclic

which can be derived from the relations

(here Fr and Gr could be q-numbers). We then have

[
I ( W + eAo - me

2
) ~RHSof(II-53)D,= - 1- 2 L 7rr 7rr

2m 2me
r=1

I ( W + eAo - me
2

) '""+ - I - 2 i L UI (7r27r3 - 7r37r2)
2m 2me

cyclic

3 ]
e aAo aAo e 11 aAo +

----11 UI -7r3 - - 7r2 - ---- -7rr if> .
(2me)2 c~c ( aX2 aX3) (2me)2 i ?; aXr

We can easily see

(and the other relations in which 1,2, 3 are cyclically pennuted) and also note
that

aAo
---EaX

r
- r, r = 1,2,3.
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Since in the classical theory for a particle with velocity u = (UI, UZ, U3) the
momentum is

r = 1,2,3, (II-57)

we introduce the q-numbers U r with the same relations, and neglecting the terms
with l/e3, we have

[

m uZ W + eAo - mez Z eh ~
RHSof(lI-53) 01 = - Z Z - Z U +--L.JurHr

2 I - U /e 4e 2mc
r=1

I eh L: (U3 UZ) i eh L:3 ur] ++-- u\ £z- - £3- +-- £r- ¢ .
2 2mc e e 2 2mc c

cyclic r=1

If we use this for (11-53)01 ' the equation to be satisfied by ¢ + is determined to
be

I~ (I + :~) u
Z

- Mo(u . H) - ~Mo [u . (E x z.)] - ~Mo (E. z.)

- (I + ~ :~) (W + eAo - meZ)I¢+ = o. (II-58)

Here Mo = -eh /2me. If we introduce the somewhat inconsistent approxi
mation of equating to I the factor (I + uZ/ eZ) of the first term in the braces
and the factor (I + uZ/4ez ) of the last term in the braces (this corresponds
to neglecting the relativistic change in the mass), we find that in addition to
the first term in the braces muz/2 corresponding to the kinetic energy of the
particle, and to -eAo, the last term of -(W + eAo - mez), corresponding to
the potential energy of the particle due to the electnc field, and the rest energy
mez, additional terms appear-the second term, the third term, and the fourth
term-that are added to the energy. The second term

- Mo(u· H) (11-59)1

may be interpreted to be the interaction energy between the magnetic moment of
the electron and the external magnetic field. Recalling (11-47), the third term is

(l1-59)z
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and this is the interaction energy between the magnetic moment of the electron
and the internal magnetic field. Guess what? You see that the Thomas factor
1/2 appears here just as in the classical Thomas theory of precession if you
compare this with the right-hand side of (11-48)electron. On the contrary. the
interaction with an external magnetic field is given by (11-59>1. and just as in
(11-48)elcctron. the factor 1/2 does not appear there. The fourth term of (II-58)
does not exist in the classical theory. but this term does not contain the spin
variable and therefore is not related to the Thomas factor. Therefore. we shall
not discuss it further.

Here I would like to add some remarks on the first term (m/2)u2 . From
(II-57) we have approximately

I 2 I 2 e
-mu = -p + -(A. P +p' A),
2 2m 2mc

but since for a homogeneous external field A = H x r /2. we obtain

I 2 p2 ell
-mu =-+-H·t.
2 2m 2mc

If we use this formula together with (11-59>1 and (11-59h. the Pauli equation
(7-28) can be derived from (II-58) without adding the Pauli term (l1-49)p.

What would happen if we add Pauli's additional term ( 11-49)p? If we add it and
use (II-54), the equations are

3 ( iM' )
C L UrJrr + -;;-urEr ¢-

r=1
(l1-53)D+p

3 ( 'M')c L UrJrr + ~UrEr ¢+.
r=1

Here M' is on the order of 1/c. Therefore. we can neglect the term M' L Ur Hr

on the left-hand side of the second equation. In this approximation. therefore,
we can use
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_[I W + e Ao - me
2

] ~ ( i M' ) +
¢ = 2me - (2me)2 e ~ UrJrr - ---;;-urEr ¢ .

If we use this on the right-hand side of the first formula and calculate again
using (II-56), we obtain many terms, but after neglecting terms of order

l/e3, l/e4 , ... , only the terms

(11-60)

remain in addition to (11-59)1 and (l1-59h for the case of (l1-53)D. If we use

11 8F
FJr -Jr F = ---

r r i 8xr '

then

M'
firsttermof(II-60) = -- L U\(E2 Jr3 - E3 Jr2)

me
cyclic

M'lI (8E2 8E3)
2ime LUI 8X3 - 8X2

cyclic

and for the second term we obtain

M'lI
second term of (11-60) = - --V . E.

2me

However, this second term does not contain spin variables and therefore is not
related to the Thomas factor, and we shall not discuss this term further. On the
other hand, for the first term, remembering that E and H independent of time
satisfy V x E = 0, the additional term containing spin resulting from M' is only

Using Jrr = mU r and noticing (11-47), we find
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Figure 11.7 J. Ham; D.Jenscn.
1972. (1907-1973)

- M'[u. (EX ~)] ~ -M'(u • Ii) (11-61)

Furthennore. on the left-hand side of (11-53)D+P, there is an additional tenn

M'(a. H) (11-62)

( 11-63J,row.

which did not exist before. and so all together, the additional tenns related to
spin in the equation to be satisfied by 4>+ are, combining (II-59) .. (l1-59h.
(11-61). and (11-62).

- (MD + M')(a. H) - (4MD + M ' ) (a. if).

If we compare this with the result (I1-48)proton obtained classically using
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Thomas' idea, we find they are exactly analogous. For the neutron, e = 0 and
therefore MD = 0, so the additional quantum mechanical term is (11-63)proton
with MD = O. This is

- M'(u • H) - M'(u • Il), ( 11-63)neutron

and this is again analogous to (Il-48)neutron obtained from Thomas' theory.
Furthermore, the result obtained by Thomas' theory and that obtained by
quantum theory not only look the same but can be shown to be completely
identical if we translate it into the former by the correspondence principle.
Therefore, we obtain an affirmative answer to the problem posed by Jensen.
Namely, the answer obtained by Thomas' method and by quantum mechanics
agree completely even for the anomalous magnetic moment.

My impression when I saw Jensen was that he seemed to be anticipating
that the Thomas theory would not give the right answer for the anomalous
magnetic moment. Now it is impossible to confirm this. I was thinking of
writing to him, but lamentably he became ill and passed away in the spring of
1973. However, because of him I had a chance to look at Thomas' work again
from the beginning. I told you earlier that Pauli withdrew his idea that spin is
classically indescribable after learning of Thomas' work; Thomas' work indeed
has sufficient content to reform Pauli.

My story has evolved and again come back to Thomas' time. Having com
pleted this full circle, I would like to stop my talk. After today's long talk, which
might have been a little bit dry, I prepare only one free-flowing talk. See you
later, alligator.



LECTURE TWELVE

The Last Lecture

Addenda and Recollections

I promised to give you seidan today. The meaning of seidan, as you probably
know, originates from the seven wise men in the bamboo grove in the Weih
period of China. These seven men rebelled against the stiff Confucianism,
forsook the world, shut themselves up in the bamboo grove, played musical
instruments and drank sake, forgot themselves amid the beauty of mountains and
water, wrote poems, and discussed the philosophy of Lao-tse and Chuang-tze
this is called seidan. I would not dare imitate these seven wise men today, but
what I meant is that for this last lecture we leave behind the rigorous discourse,
and as professors often do in their last lecture, complement the material with
anecdotes and recollections which come to mind. It is my wish that through
such unassuming recollections I can sketch somewhat the status of physics in
Japan from 1925 to 1940, which has been the stage for my lectures.

Actually, when I finished the first lecture of this series, Mr. Ishikawa of
Shizen l brought me a book entitled Theoretical Physics in the Twentieth Cen
tury. This book was originally planned to celebrate Pauli's sixtieth birthday,
but it was fated to be a memorial tribute; Mr. Ishikawa brought it to me
because there are many stories about spin in it. I was afraid that if I had
read it, then I might find that somebody else had already written about what
I wanted to say. Therefore, for some time at the beginning of these lectures, I
purposely did not read this book. After browsing through it much later, I was
relieved to find that the talks which I gave based on my memories were not
so wrong.

One story I have told is about Kronig. It is the episode in which Kronig thought
of the self-rotating electron, talked to Pauli about it, and was categorically

I A Japanese monthly journal published by Chuokoron-sha. Inc.. now discontinued. Shizen
means "nature"
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rejected by Pauli. I think I heard this story when I came to RlKEN2 from
Professor Yoshikatsu Sugiura, who came back from Europe shortly before Pro
fessor Yoshio Nishina. Kronig himself describes this episode in the memorial
book for Pauli, which Ijust mentioned. Therefore, in lecture 2 I have borrowed
from his article.

Next is a story of Uhlenbeck and Goudsmit. About one year after Kronig
had decided not to publish his idea because of the objections of Pauli and the
Copenhagen group, Goudsmit and Uhlenbeck arrived at exactly the same idea
of a self-rotating electron, and they managed to submit it to ajournal. They also
received various criticisms, and consequently they wanted to withdraw their
paper. I told you in lecture 2 that by then the paper was already in the hands
of the publisher. I heard this episode from R. E. Peierls, but recently I received
material describing this story in detail from Professor Isamu Nitta. In Delta, a
Dutch English-language journal, is a recollection by Goudsmit.

According to this recollection, Goudsmit was studying under Ehrenfest.
Probably Ehrenfest sensed that Goudsmit was a better experimentalist than the
orist, so he recommended Goudsmit to see Paschen at Bonn. Also in Paschen's
lab was Back, and there they discovered the Paschen-Back effect, as well as
experimentally confirming the hydrogen fine structure calculated by Sommer
feld. Goudsmit learned of a variety of experimental results, and while talking
with these experimentalists, he was led to the idea of explaining the alkali
doublet term by the coupling of the vectors t and s based on the idea of the
fourth quantum number which Pauli had introduced in relation to his exclusion
principle (of course he did not know that Kronig had the same idea). In addition,
one of the very important facts he learned in Paschen's lab was the fine structure
of H. These spectral lines which should be forbidden according to Sommerfeld's
theory were definitely observed in Paschen's experiment. Goudsmit realized
that if he used this new interpretation (this was also considered by Kronig) to
consider the fine structure of H as similar to the alkali doublet term, then these
lines are not forbidden but are naturally expected.

Goudsmit, however, was not a very capable theoretician, as he himselfadmits,
and ideas such as the fourth degree of freedom and the self-rotating electron
did not occur to him. However, he is very proud that he could explain that these
forbidden lines are actually not forbidden.

Therefore, Goudsmit summarized these ideas in a paper and sent it to
Copenhagen for the opinions of Kronig and Kramers. Goudsmit notes in his
recollection that although a long letter came back from Kronig in which much
was written on a variety of subjects, not a word was mentioned on Goudsmit's
idea, which suggested that Kronig had absolutely no interest in it. Thus Kronig
completely ignored Goudsmit's idea and danced around in the letter to different

2. Rikagaku Kenkyujo Institute of Physical and Chemical Research, the government-supported
research institution in Japan, where scientists conducted research with utmost freedom
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subjects, and it seems that he was inflicting on Goudsmit the rejection he had
incurred from Pauli. It seems to be a universal truth that a bride who is bullied
by her mother-in-law will herself become a bad mother-in-law.

Uhlenbeck seems to have joined the battle around this time. He was Dutch and
happened to be studying in Italy. There he was educated in classical physics but
did not learn at all about the new quantum physics or spectroscopy. He returned
to the Netherlands and joined Ehrenfest's group, whereupon Ehrenfest arranged
for him to work with Goudsmit. According to Goudsmit, he was called to see
Ehrenfest one day and was told, "Please work with Uhlenbeck for a while;
then he will learn a lot from you about the new atomic structure and spectra."
Goudsmit says that although Ehrenfest said it with a straight face, he must have
been thinking, "Then you may learn from Uhlenbeck what the real physics is."
Anyhow, Ehrenfest seems to have been an excellent educator who recognized
the talent in his disciples, complemented their shortcomings, and guided them
with very kind humanity so that each developed his originality. (Ehrenfest was
modest, always saying that he was not a scholar but only a bush-league teacher.
It seems to me that he did not say this out of modesty, but he genuinely thought
that way, and I think it is not unrelated to the love he showed toward immature
students. When Lorentz retired, Ehrenfest succeeded him, but only after he had
turned down the offer for the position many times, saying that he was not worthy.
He eventually accepted it after being persuaded by Lorentz, but throughout his
life he had never forsaken the idea that he was not really qualified, and he ended
his life by the tragic act of suicide.)

Pauli called the fourth quantum number "classically indescribable two
valuedness" and rejected all mechanical imagery, but Uhlenbeck thought this
was the manifestation of the fourth degree of freedom of the electron and, more
concretely, a self-rotation of the electron. Goudsmit could not quite understand
the idea that the electron self-rotates but somehow liked it, and the two wrote
it up in a joint paper and handed it to Ehrenfest. In the meantime, Uhlenbeck,
who was versed in classical theory, thought that they should seek Lorentz's
opinion, and therefore he saw Lorentz and presented their idea of the self
rotating electron. Lorentz said, "This idea is very difficult. Because if we adopt
this idea, the magnetic self-energy becomes very large, and the mass of the
electron is larger than that of the proton." Upon hearing this, Uhlenbeck got
cold feet and went to Ehrenfest and said, "Please do not submit that paper. It
probably is wrong." Ehrenfest said, "It is too late. That has been sent already."
Goudsmit, on the other hand, was not considering it seriously anyhow, so he
never dreamed that the idea of a self-rotating electron was wrong. Goudsmit
remembers the words of Ehrenfest when they handed him the paper. "This is
a good idea. Your idea may be wrong, but since both of you are so young
without any reputation, you would not lose anything by making a stupid
mistake." Thus the paper of the two lads went out into the world and was
published.
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This paper was submitted by Ehrenfest to the editor of Naturwissenschaften
and was published, and a while after this paper was published, Uhlenbeck
and Goudsmit sent another paper to Nature, which was harshly criticized by
Kronig, as I told you in lecture 2. In the aforementioned Theoretical Physics
in the Twentieth Century, Kronig had written an article which sounds a little
bit like an excuse. He says since he was very coolly received when he voiced
his idea in Copenhagen, yet within one year after that Bohr and all his minions
there had made an about-face, all Kronig could do was simply call attention to
the fact that there are certain points which fail even if the electron is considered
to be self-rotating.

There were many other responses to this paper. For example, Heisenberg
immediately wrote a letter to Goudsmit. He starts with "I have read your
•courageous' paper," and after writing a formula he asks the question, "How did
you get nd ofthe factorof21" Upon reading this letter, Goudsmit had absolutely
no idea either why their paper was so "courageous" or what was meant by the
factor of 2. On the other hand, Uhlenbeck seems to have realized the difficulty
of the factor of 2, in addition to the difficulty pointed out by Lorentz, and they
clearly recognized these points in their paper in Nature. Uhlenbeck went so far
as to try to withdraw their paper; he must have known very well that it was
indeed a very "courageous" paper.

While this was going on, Thomas' paper was published, and for the time
being, the difficulty of the factor of 2 was resolved. It was lucky for Goudsmit
and Uhlenbeck that Ehrenfest, unlike Lande, did not advise them to consult
Pauli. I shall quote from a photocopy of a letter from Thomas to Goudsmit
which I found among the materials received from Professor Nitta.

I think you and Uhlenbeck have been very lucky to get your spinning
electron published and talked about before Pauli heard of it ... more
than a year ago, Kronig believed in the spinning electron and worked
out something; the first person he showed it to was Pauli-Pauli ridiculed
the whole thing so much that the first person became also the last and no
one else heard anything of it.

Until Thomas' paper was published, Pauli was dogmatically opposed to
the idea of the self-rotating electron. While Heisenberg was expressing his
objection in a half-cynical, soft tone, such as "'courageous' paper" or "How
did you get rid of the factor of 21" Pauli was relentlessly barking against Bohr's
endorsement of Uhlenbeck and Goudsmit's paper. Namely, Bohr composed a
note praising the paper by those two in Nature, but Pauli deplored this, saying
that such an act by a person none other than Bohr simply introduced into atomic
physics a new heretical doctrine. However, as I told you earlier, when Thomas'
paper in which the discrepancy of the factor of 2 between experiment and
theory was eliminated was published and the correct spacing of alkali doublets
was clearly derived by the classical Thomas theory, Pauli could no longer
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maintain the objection "c1assicalIy indescribable." Goudsmit says that soon
after Thomas' paper was out, he received a postcard from Pauli saying, "I now
believe in the idea of the self-rotating electron."

As you have seen here, the history of the discovery of spin has folIowed
an interesting path showing a display of human relations among a variety of
strong characters. In Theoretical Physics in the Twentieth Century, van der
Waerden also writes in detail about Pauli's dealings with Kronig, Uhlenbeck,
and Goudsmit about spin; please read that.

Next is the story of Pauli's "neutron."
I told you in lecture 7 that around 1930 he wrote to several people about this

idea. The letter which I quoted earlier was the one which was cited in Jensen's
Nobel lecture, but Yasuo Hara of the Tokyo University of Education told me
that there is a more detailed letter in a supplementary physics textbook for
American high-school students. While the letter quoted in Jensen's lecture was
perhaps aimed at theoreticians, this letter was for experimentalists, exhorting
them to find such particles. Mr. Hara sent me a copy, so I quote it here.3

Zurich, December 4, 1930

Dear radioactive ladies and gentlemen.
I beg you to most favorably listen to the carrier of this letter. He will tell

you that, in view of the "wrong" statistics of Nand Li6 nuclei and of the
continuous beta spectrum, I have hit upon a desperate remedy to save the
laws of conservation of energy and statistics. This is the possibility that
electrically neutral particles exist which I will call neutrons, which exist

in nuclei. which have a spin 1/2 and obey the exclusion principle ...
The mass of the neutrons should be of the same magnitude as the electron
mass ... Thus. dear radioactive ones, examine and judge ...

Your most obedient servant,

W. Pauli

According to this letter, we see that Pauli was trying to resolve the difficulty
not only of the beta spectrum but also of the contradiction of the statistics and
spin of the N nucleus (and the 6Li nucleus) by introducing his "neutron." By
the way, radioactive lady apparently refers to Lise Meitner.

Now I shalI change the subject slightly. I heard from Professor Nishina the
story that Pauli always said Dirac's way of thinking was acrobatic. The story
about "Pauli's sanction" was also from Professor Nishina. Supposedly, when
Heisenberg arrived at the new idea to use quantities whose products are non
commutative (it was soon found that they are matrices), he first sought Pauli's
opinion. For this, Pauli is said to have given his sanction right away. Professors

3 For another translation ofPauli's letter to the Tubingen meeting. see Pais. Inward Bound. p 315
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Nishina and Sugiura of RIKEN, on whom I shall remark later, very often talked
to me about European scholars and their research lives.

Among Professor Nishina's stories there is naturally the account of his diffi
cult but inspiring experience in deriving together with Klein the Klein-Nishina
formula. When they did these derivations, they independently calculated to
some point and then compared their results, and independently calculated again
and compared, and repeated the process. Nowadays this method is standard,
but at that time it was new to us. We adopted the same method when I worked
with Shoichi Sakata, Hidehiko Tamaki, and Minoru Kobayashi, and we had
a hard time because each of us made mistakes, but Professor Nishina told us
that when he was working with Klein, they also had a hard time because of
discrepancies in their calculations. When we learned it was not just we, we
were a little bit relieved.

You might think that the Klein-Nishina formula had been derived using a
method such as that described in Heitler's The Quantum Theory ofRadiation,
but that is not the case. Remember when they started the derivation, there had
been no field quantization; they used the makeshift method of calculating the
electron field and electromagnetic field classically and then applying the corre
spondence principle to the results to translate them into quantum theory. Note
that treating the electron field classically automatically means that it is based
on SchrOdinger's idea that the electron wave is a wave in three-dimensional
space. This idea of treating the interaction between the electron wave and
the electromagnetic field using the correspondence principle was developed
independently by Klein and Gordon around 1926; they first considered the
relativistic electron wave equation for a scalar field and calculated, among
other things, the Compton effect. For this reason the scalar equation for the
electron has been named the Klein-Gordon equation, but what they aimed for
was not the equation itself but the explanation of the Compton effect. Thus, it
was quite natural that as soon as the Dirac equation appeared, Klein and Nishina
wanted to calculate the Compton effect using the Dirac equation.

As I said earlier, by using the correspondence principle Klein and Gordon
salvaged SchrOdinger's unsuccessful idea to consider the electron wave as a
wave in three-dimensional space rather than in configuration space. We can
regard this method as the forerunner of the field quantization, which appeared
soon after. Since the classical description of the motion of a particle and the
application of the correspondence principle to the solution-the methods of the
old quantum theory-were formulated by Heisenberg into matrix mechanics,
it is naturally expected that the method of Klein and Gordon, which applies
the correspondence principle to the classical theory of the wave field, will be
formulated by considering the field quantities as q-numbers. In fact, it seems
that Klein had had the idea to quantize 1/J since about 1926, and he completed
this work in 1927 together with Jordan (this was discussed in lecture 6), who
had had the same idea, although the priority was taken by Dirac's acrobatics.
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Anyhow, if we use the method in Heitler's book, the Klein-Nishina formula
would have perhaps been derived in ten days. If we use Feynman's method,
probably three hours suffices. However, when Professor Nishina did it with
Klein, it apparently was a very lengthy calculation. I might add that soon after
the Klein-Nishina paper there was a paper in which Professor Nishina as sole
author discussed the polarization of the scattered "V-ray, but this calculation
seems to have been even more complicated. Therefore C. Mj1lller, who was
then a graduate student, checked the calculation. Of course, Professor Nishina
thanked Mj1lller at the end of the paper.

The problem of whether SchrOdinger's 1{t is a wave in the configuration space
or a wave in three-dimensional space also worried us when we were third
year undergraduate students at Kyoto University and were studying quantum
mechanics. That was in 1928, and by then the Jordan-Klein paper had been
already published, but to a novice just starting to understand quantum mechanics
as a third-year student, this paper was not known (nor was there any professor
who taught these things). I was just saying, "I don't understand, I don't
understand," but apparentl) Yukawa believed 1{t must be a wave in three
dimensional space, and h~ tried hard to solve the problem of He without using
1{t in six-dimensional s~ Ice. As a result of that, he arrived at the idea to set up
a Schrooinger equation In three-dimensional space by considering the electric
field due to the charge density -e1{t*1{t in addition to the nuclear electric field
Ze/r and solved the (·quation. I remember he told me that he obtained He
energies that agreed pretty well with experiments. Perhaps you see this already,
but in essence this is the Hartree approximation.

In relation to these, I remember that towards the end of our third undergrad
uate year, there was a journal club in which the students introduced papers they
had read.4 We made a public report for the first time in our lives. I reported on
Heisenberg's "Mehrkorperproblem und Resonanz in der Quantenmechanik"
(Many-body problem and resonance in quantum mechanics), and Yukawa
chose Klein's paper "Elektrodynamik und Wellenmechanik von Standpunkt
des Korrespondenzprinzip" (Electrodynamics and wave mechanics from the
standpoint of the correspondence principle). This is the aforementioned paper
by Klein, and as I said, he regarded the electron wave as a wave in three
dimensional space, so it was quite natural that Yukawa chose this paper. On the
other hand, as for me, the paper by Heisenberg that I chose discusses how 1{t
obeys Bose statistics or Fermi statistics, depending on whether 1{t is symmetric
or antisymmetric with respect to the interchange of particles, and 1{t here is
certainly a function in the configuration space. From this it seems that I was
attracted to the idea of 1{t being in the configuration space. However, I think I
was attracted to this paper more because of Heisenberg's expert use of analogy.
I was attracted by the deftness of the analogy in which he started from the

4 At that time. the baccalaureate program in a Japanese college lasted for three years.
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resonance of two pendula, which is a very ordinary, everyday phenomenon,
and gradually proceeded to the sophisticated problem of the symmetry of Vt
and the statistics of the particle. The fact that I was not attracted at all to Dirac's
paper, which discusses the same problem, attests to this.

A little bit later, I met with Yukawa in the library, where he opened on
a table the issues of Zeitschrift fUr Physik in which the Jordan-Klein paper
and the Jordan-Wigner paper were published and informed me that there was
this surprising work that, if Vt in the three-dimensional space is quantized
by the canonical commutation relation or anticommutation relation, then we
could obtain exactly the same conclusion as when we took the symmetric
or antisymmetric wave function using Vt in configuration space. Thus I also
read those papers right away and found that the murky problem of three
dimensional wave versus multidimensional wave had been completely and
elegantly answered.

In the year 1929, when we were graduated from the university, Heisenberg
and Dirac came to Japan in September. They gave lectures in Tokyo and
Kyoto. I got up my nerve, went to Tokyo, and listened to the lectures. These
lectures were given from September 2 through 9 at the University of Tokyo
and at RlKEN. Heisenberg's lectures were entitled (I) "Theory of Ferromag
netism"; (2) "Theory of Conduction" (Bloch's theory of electric conduction);
(3) "Retarded Potential in the Quantum Theory" (the famous Heisenberg-Pauli
theory); and (4) "The Indeterminacy-Relations and the Physical Principles of
the Quantum Theory." The titles of Dirac's lectures were (I) "The Basis of
Statistical Quantum Mechanics" (the density matrix); (2) "Quantum Mechanics
of Many-Electron Systems" (representing the permutation operator of electron
coordinates by spin variables and its applications); (3) "Relativistic Theory
of the Electron" (needless to say, this is the story of the Dirac equation);
and (4) "The Principle of Superposition and the Two-Dimensional Harmonic
Oscillator." Lectures I, 2, and 3 were given at the University of Tokyo, and
lectures 4 were given at RlKEN. As you see, the content of the lectures was at
the forefront of contemporary physics.

Miraculously, I remember, I could more or less understand the content of
the lectures because fortunately I had already looked through papers related to
these talks. (I shall tell you later, however, that this required great labor.) This
was the first time I had come from rural Kyoto to Tokyo and seen in person
distinguished people like Professor Hantaro Nagaoka, Professor Nishina, and
Professor Sugiura and also the brilliant graduates of the University of Tokyo,
who obviously looked very bright. I listened to the lectures, hiding myself
toward the last row of the room, overwhelmed by those luminaries. There was
one senior student who had finished at the Third High School of Kyoto and
was graduated from the physics department of the University of Tokyo, and he
pointed out to me that that was Professor Nishina and those were Masao Kotani
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Figure 12.1 In Sepcmber 1929. when I was graduated from !he univcr.;ll)'. Heisenberg an;! Dirac
visited Japan. From lhe kft: Nishinll. skipping lwo.. Heisenberg. Nagooka. and Dirac; Sugiuro is
on lhe f;ll" righ

and Tetsuro Inui. who were studying quantum ffle(:hanics in Professor Nishina's
colloquium. He encouraged me to get acquainted with these people. but I simply
stayed shy. In this atmosphere, I clearly remember the question Dirac asked
Heisenberg after the third lecture. As you probably know, Heisenberg and
Pauli in their theory introduce the condition V • E = 4np. not as a relation
between the q-numbers. but as an additional condition for the slate vector 'I/J.
(V. E)'I/J = 41rp· y,. Dirac asked the question whether the eigenvalue 0 of
V . E - 41rp is discrete or continuous. Apparently this was an unexpected
question for Heisenberg. He could not give an answer right away and after
thinking for a while answered, ..It is probably continuous."

I rememberoo the last day of the lectures at the University ofTokyo. Professor
Nagaoka got up and raved about how Heisenberg and Dirac in their twenties
had accomplished such a major thing as the eSlablishment of a new theory and
deplOted lhat in Japan the physicists were still picking up the chaff and bran or
Europe and America, and that students were just copying lectures. which was
terrible. "You guys should emulate Heisenberg and Dirac." (Professor Nagaoka
ranted this in his Nagaoka-English. and I could not quite hear it accurately. so
this may be my arbitrary tranSlation.)

I used to regret sometimes that I had chosen quantum theory as my major
subject when I was a third-year undergraduate student and had to choose my
major field. At that time. there was no textbook on quantum ffle(:hanics. There
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Figure 122 One year after I was graduated from tl1c: uniVffl<ity, Professor Nishina visited K}'CJto
FI"()llI row, second from tl1c: right: Nishina. Kimur.. Back row. seoond from II1c: nglll. Tomonaga.

Yukawa.

were only books like Collected Papers ofSchrooinger or Born's Problems in
Atomic Physics, and most studying was done by looking up the original papers
one after the other. As I did that, I found that each paper quoted lots ofothers,
and unless I read them, I could not understand what was written there. For this
reason I drowned in a sea of many papers. Furthermore, I was in delicate health
at that time, and although I had received a bachelor's degree, I was in a totally
neurotic state. Thus I often thought ofquitting quantum mechanics, but after a
year and a half or so, I found that I had caught up to the level that I could more
or less understand the lectures of Heisenberg and Dirac. However, by the time
I caught up. the enemy had advanced. Professor Nagaoka's pep talk really did
not get me anywhere.

It was quite natural that, even among the conservative professors at Kyoto
University. who were completely out of touch, the atmosphere arose that
something must be done in view of the fact that the new physics of the quantum
theory was spreading throughout the world like wildfire. At that time in Kyoto
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University there was a professor of spectroscopy Masamichi Kimura, whose
name was known even outside Japan. He was an experimentalist, and apparently
he initially did not like theoretical physics that much, but after visiting abroad
and witnessing the status of physics in Europe and America, he thought that
we should not be studying only classical physics in Japan. Luckily he was
also a chief researcher at RlKEN; he asked Professor Sugiura of RIKEN to
give an intensive series of lectures on quantum mechanics at Kyoto University.
So Professor Sugiura came to Kyoto, 1 think around the beginning of 1930. I
remember it was a cold time, and we listened to the lecture in a room heated by
a stove. After that, I think in early summer of the next year, Professor Nishina
came to give lectures.

Professor Sugiura learned that Yukawa and I were studying quantum me
chanics. He said that if we liked, he would propose some topic of study. 1 told
you that by the summer of 1929 I, at a very slow pace, had somehow caught up
to the quantum mechanics, but it is altogether quite different to do some original
work. The theoretical framework of quantum mechanics had been more or less
completed, and the problems of the atom had been almost all solved, so there
was not much left to do in those fields. Therefore, I got somewhat interested
in molecules, studied the work of Hund, and looked for an interesting problem
related to molecular structure. 1 found, however, that even there the physical
problems were more or less done and all that was left was more suitable
for chemists. Therefore, it seemed to me that the only areas where 1 could
work were in the fields of solid state physics, nuclear physics, and relativistic
quantum mechanics. After racking my brain for which direction to take, I came
up empty-handed. I could not help realizing that whatever direction I took,
my ability was not sufficient. Therefore, when Professor Sugiura proposed to
give me a topic, I wanted to use this occasion to decide in which direction
to proceed.

On the other hand, from early on Yukawa seemed to have determined to
study either nuclear physics or relativistic quantum mechanics. (Mr. Yukawa,
please correct me if 1 am wrong.) By self-study, he was attacking the theory
of the hyperfine structure of spectra due to nuclear spin and other problems.
However, he probably also wanted to hear what topic Professor Sugiura would
give him, and we both went to Professor Sugiura's office.

The project the professor gave me was the problem of the Na2 molecule
(I do not know whether he knew that I was interested in molecules), which
was the task of applying Heitler and London's theory of H2 to Na2. 1 was
already lukewarm about molecules at that time, but I thought it would be
instructive to do something by myself rather than reading other people's papers,
and therefore, I dared to say, "Let me do it." This was a numerical calculation
from the beginning, and it did not look that instructive. (It was good training
for perseverance, however.) Moreover, it was like picking up the crumbs of
Professor Sugiura's work, and it was not inspiring at all. Also, when the
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calculations were carried out, there appeared many awkward results, and the
whole thing did not work.

Professor Sugiura also gave a topic to Yukawa to study, namely, to theoreti
cally explain the peculiar result of Bergen Davis' experiment. However, if we
examine the experiment in detail, it is dubious. It was very likely a botched
experiment. After we had been stuck in this situation for a while, Professor
Nishina came to lecture at Kyoto University.

Heisenberg's book Physikalische Prinzipien der Quantentheorie (The phys
ical principles of quantum theory) was used as the text for Professor Nishina's
lectures. When Professor Sugiura would lecture, he would write a long, long
formula (called a confluent hypergeometric function) from one end to the other
of a long blackboard, and he would lecture about his own work. It might have
been a creative work, but it was too detailed for a beginner to make sense out of
it. On the other hand, Professor Nishina's lecture, albeit much of it was from the
book used and much credit should go to Heisenberg, was impressive, especially
the discussions after the lectures. Professor Kimura's comment based on the
idea of experimentalists, Professor Nishina's response, and so on provided an
atmosphere in which even I, who was timid and could not talk on such an
occasion so far, managed to ask Professor Nishina a question after a lot of
hesitation. Professor Nishina was extremely kind in answering it and in listening
to a novice such as I.

One day during his stay at Kyoto, Professor Nishina invited Yukawa and
me to dinner. When we talked about the work given by Professor Sugiura,
Nishina said that Bergen Davis' experiment had been proved wrong and that
in experiments in which scintillation was used, the experimental results were
often affected by the mind-set of the experimenters.

As for my work, well ... , the professor said that there were many other
interesting things. Nishina showed us a recent letter he had received from Klein,
and he talked about Bohr's statement in the letter that quantum mechanics was
not valid in the atomic nucleus. According to Bohr's idea, quantum mechanics
was more advanced than classical mechanics in that the effect of the observation
on the object could not be smaller than h, but since the observing apparatus
itself was composed of protons and electrons, there must be some additional
intrinsic limitation on the operation of observation. Because of such limitation,
the present quantum mechanics, which did not take that into account, would
not be valid in the nucleus. Nishina told us that as a result of this limitation,
the electron must lose its identity in the nucleus-that was Bohr's idea. (I write
these as if 1 clearly heard these words, but it is hardly likely that at that time 1
could clearly comprehend such a difficult subject. So 1 must be unconsciously
touching it up just like a person who talks about a dream after waking up.)

After all these events, a letter from Professor Nishina arrived at the beginning
of 1932. In this letter he asked whether I wanted to study in his lab at RIKEN.
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I was very hesitant, and I had reservations, not being sure whether I could live
up to the expectations of those world-famous professors at a top-notch place
like RIKEN, but I also hoped that this would be a good chance and I should
jump at the opportunity. I wrote these feelings honestly to Professor Nishina,
to which he replied, "Why don't you come for two or three months to try it.
You can continue that calculation on Na2, or there are many other interesting
projects, so you can come and decide." Thus I went to Tokyo at the end of April
1932 and became a member of Nishina's lab in RIKEN.

When I arrived at Nishina's lab, he asked me what was going on with Na2.
When I said that it was not getting anywhere, he told me that there was one
calculation he would like me to do on the neutron, and he explained in detail what
this particle called neutron was. I went to Professor Sugiura and said that I was
now working in Nishina's lab and that I was doing the calculation on neutrons.
Sugiura congratulated me and said that would be much more interesting than
Na2, and he told many stories from Europe. He talked about how his work on
confluent hypergeometric functions was appreciated by Pauli and described the
atmosphere of Gottingen University where he had worked. (At that time Dirac
and Oppenheimer were there.) I think it was at this time that I heard the story
of Kronig and Pauli.

The problem which Professor Nishina proposed was to calculate the cross
section for excitation and ionization when neutrons pass through some material.
In 1932 the neutron was discovered, but the true nature of cosmic rays was not
yet understood. Professor Nishina had the idea that they were neutrons and asked
me to do such a calculation. At that time he had not yet received Heisenberg's
paper on nuclear structure, and therefore he still did not know about the nuclear
force. Nishina thought that although the neutron is neutral, it must have electric
or magnetic moments, and such a dipolar field might interact with electrons and
thus excite or ionize atoms.

In order to do this calculation, we need the wave equation of a particle which
is neutral but which has an electric or magnetic moment. At that time Handbuch
der Physik, which I mentioned in the last lecture, was not yet published, and I
did not know of the Pauli term. However from the relativistic requirements, it
must have the form M'P2[(O'" H) - i(a.. H)], and therefore I used the Dirac
equation for a neutral (e = 0) particle with what are now called Pauli terms.
(This was not a big deal; I am just telling you what I did.) In the meantime,
Heisenberg's paper arrived in Tokyo. It was found that the interaction between
a neutron and a nucleus is much larger than that between a neutron and an
electron. Furthermore, when deuterium was discovered, it was immediately
obvious that solving this two-body problem and determining the properties of
the nuclear force were much more important, so we switched our project.

For these reasons I started calculations related to phenomena such as the
binding energy of the deuteron and the scattering or capture of a neutron by
a proton. Heisenberg regarded the nuclear force as an exchange force and
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introduced the potential J(r) for it. He figured that the nuclear force must act
only over a very short range and that the potential goes to zero if r ~ 10- 13

cm. Now, it was necessary to determine the magnitude of the potential. Since
the binding energy of the deuteron was known experimentally, it was possible
to determine the magnitude of the nuclear force so that the theoretical value for
the binding energy agreed with experiment. Using the potential, we can discuss
neutron scattering and capture. As more and more experimental facts surfaced,
both the cross-section of elastic collision and that of the capture of a neutron
by a proton were found to be abnormally large for slow neutrons, and this drew
Professor Nishina's attention.

However, when I took the potential J(r) determined by the method mentioned
earlier from the binding energy of the deuteron and used it for scattering,
this conclusion did not emerge. I assumed a variety of forms for J(r), such
as the potential wells _e-r/ a , _e-r/ a /r, etc., but the conclusion was almost
independent of the assumed form. Then it occurred to me that if in the two-body
system of a proton and a neutron, in addition to the S level of deuterium, there
should exist another S state whose energy was nearly zero, then the S wave in
the incident neutron would resonate with it, and the zero-energy neutron would
show a very large scattering cross-section. Moreover, I found out that such a
level did not result from Heisenberg's exchange force alone, but if we added
the exchange force proposed by E. Majorana (I touched upon the Majorana
force in lecture 10), such a level was possible. Therefore, I wanted to determine
the ratio of the Heisenberg force and the Majorana force from this scattering
experiment. When I did this, the idea worked very well as far as elastic scattering
was concerned, and I succeeded in determining the ratio of the two forces.

I was quite elated with this achievement, and Professor Nishina was also
satisfied, and our results were reported successively from the annual meeting
of the Physico-Mathematical Society of Japan in Sendai, 1933, to the autumn
meeting of RIKEN in 1935. However, probably because he was so busy with a
variety of experimental work, Professor Nishina put off publishing this paper.
While I was agonizing about this, Hethe and Peierls did exactly the same thing
and published it. I was extremely upset,S and I was livid with Professor Nishina.

While elastic scattering was explained by this idea, neutron capture was
not. In my calculation the cross-section for capture became zero if the energy
of the neutron was zero. The reason for this is that for capture hv must be
emitted, but according to the normal selection rules, such a process must be
p ~ S, and therefore even if there is another S energy level very close to
zero, there is no influence on the P wave. As a result of this, if the energy of
the incident neutron is zero, the cross-section also becomes zero. The story
would be different if there existed a P level very close to zero energy, but then
we would have to change J(r) drastically in order to overcome the centrifugal

5 Litemlly. I felt as if I were biting my navel.
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force, and if we do this, all the other agreements of the theory with experiment
would be lost.

However, there was another possibility: since the neutron and proton have
magnetic moments, it is possible to emit hv via a magnetic dipole in addition
to the usual emission following the selection rule (namely, emission of hv via
an electric dipole), and for this emission S -+ S is allowed. Fermi was the first
to point this out. When I saw Fermi's paper, I was devastated. We had been
prisoners of the ordinary common sense of spectroscopy and were thus blinded
by the conventional notion that emission of hv due to a magnetic dipole was
very small and approximately forbidden. Our only consolation was that Bethe
and Peierls did not think about this possibility either; it is quite difficult to be
free of preconceptions.

There are many other stories about my days in Professor Nishina's laboratory.
For example, calculations were made for a variety of phenomena related to the
positron using the hole theory. However, if I talk too much, we shall run out of
time, so I shall limit myself to stories related to the subjects discussed in this
book. However, I can say with certainty that this period while I was Professor
Nishina's assistant was decisive in determining the direction of my research,
i.e., to proceed in the theory of atomic nuclei, cosmic rays, and quantum
electrodynamics. Before that, I had been astray in Kyoto.

While we were doing this type of work in Tokyo from around 1933 to 1935,
Yukawa in Osaka was incubating his idea about the meson. Apparently, he
wanted to create the theory of ~-decay soon after Heisenberg's paper on the
exchange force was published in 1932. Namely, Yukawa's idea was to describe
the disintegration using Heisenberg's isospin according to Heisenberg's idea
that a neutron changes into a proton by emitting an electron. I do not remember
precisely when, but I vaguely remember that Yukawa sent a write-up of his
idea to Professor Nishina, who shared it with me. If I remember correctly, he
quantized the electron field as a Fermi field, without the idea of the neutrino, and
as a result, I had an impression that Yukawa was having considerable difficulty
because of the inconsistencies which pop up here and there in the theory. In
the meantime Fermi proposed his theory of ~-decay. Therefore, many people
tried to use Fermi's theory to explain the force between a proton and a neutron
as due to the exchange of an electron-neutrino pair, but they found that it did
not work.

I think it was at the Physico-Mathematical Society's annual meeting in Sendai
in 1933 that Yukawa told me his idea of the particle with a mass one hundred
times that of the electron by drawing a formula with a stick on the ground of
the athletic playing field. I think he said that he could explain the nuclear force
if we could assume such a weird particle existed. I think I also heard from
somebody at Osaka University that he was very much concerned about what
we were reporting in the conference because the title of the talk by Professor
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Nishina and me happened to be "A Note on the Force between the Proton and the
Neutron." By the way, the title of Yukawa's paper was "On the Force between
Elementary Particles." Just from the title, our work also sounded like the theory
of mesons. My recollection may not be accurate, but I hope it entices Yukawa
to give his version of the facts.

I told you earlier in lecture 10 that the theory of the meson was also developed
in Europe around 1936--1937, and in 1939 it was decided that a new Solvay
Congress was to be held with the development of this new theory as its main
theme. Yukawa was the first Japanese invited to this conference, and he came
to Europe. Shortly before the meeting he visited me in Leipzig, where I was
studying at that time. Unfortunately for Yukawa, it was summer recess at the
university, and neither Heisenberg, Hund, nor other young colleagues were
there. Therefore, he just looked through the newly published journals in the
physics department library and returned to Berlin. Meanwhile, the Second
World War started in Europe. We received notice from the embassy in Berlin
advising all Japanese in Germany to repatriate, and thus both Yukawa and I were
fated to leave Europe. Needless to say, the Solvay Congress was canceled.

In this Solvay Congress Pauli was to have given a talk on the grand theme of
the quantization of a generally applicable relativistic field, in which he was to
have laid out the general aspects of the theory including the relation of spin and
statistics, which I discussed in lecture 8, and other magnificent discussions in
his favorite, intricate way. That of course included the commutation relations
in the four-dimensional space. A manuscript of the Solvay talk prepared by
Pauli was sent to Yukawa, and after he returned to Japan, Yukawa copied
it for distribution in the country. When I established my super-many-time
theory during the war, one of the important points of the theory was the four
dimensional commutation relations, and had I not had this manuscript, I would
have had to work considerably more to create my theory. Indeed, the four
dimensional commutation relations for the electromagnetic field were already
available in Pauli and Jordan's 1927 paper. The four-dimensional commutation
relations for an arbitrary Bose field and an arbitrary Fermi field were not
discussed in detail in any papers except in Pauli's manuscript for the Solvay
Congress, and if I had not had it, it would have taken me much longer to create
the super-many-time theory.

Now I am going to conclude this lecture. Thank you very much for your attention
for such a long time. I also wish to thank Professor Nitta and others who supplied
a variety of interesting materials. My anecdotes related to Professor Yukawa
are based on my somewhat uncertain memory, and perhaps quite a bit of my
imagination and subjectivity may have crept into it, which I am afraid might
annoy Yukawa a little bit. However, as I told you earlier, it is highly desirable
that how the great masterpiece of the prediction of the meson's existence took
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shape from the murk be described by its creator, and I hope this talk of mine
will invite him to do so. I simply ask the indulgence of Master Yukawa on
this matter.

Finally, Mr. Ishikawa ofShizen has generously accepted the painstaking work
of tracking down and copying the papers which I have requested. Not only that,
he often discovered papers and other literature which were unknown to me and
informed me of their existence-it was just like Yukawa informed me about
the papers of Jordan and Klein and of Jordan and Wigner. (Mr. Ishikawa, don't
be shy!) This literature was of great help to me.
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The lectures Spin wa meguru were initially published in the January through
October 1973 issues of Shizen, and I expanded and revised them quite a bit
to make them into this book. I started out this series intending to describe the
subject concisely and simply, but as I kept on writing, the manuscript grew, and
the contents became terribly detailed. As I was reading many of the old papers,
I often remembered the old days when I first read them, and I could not resist
the temptation to relive how I felt, what I thought, what I found very difficult at
that time. Thus my pen moved by itself, on and on. Even those subjects which
could have been treated lightly started to involve many formulas which might
burden readers, and the whole thing became rather unwieldy.

If I look up the word spin in an English dictionary, in addition to the meaning
to rotate, it can mean twisting a fiber to form thread, and perhaps from there it
can also mean to draw out something. Especially there is the idiom spinning
a yarn, and this seems to describe an old sailor talking on and on about his
youthful adventures. (Mr. Ishikawa l informed me of this one.)

Anyhow, the period from the 1920s through the 1940s, which is the stage
of this book, is a particularly rich period in the history of physics, especially
worth recording, when quantum mechanics gradually matured. The special
characteristic of this period was the youth of its major players. For example,
Pauli was twenty-five years old when he published his exclusion principle, and
Heisenberg was twenty-four years old when he arrived at the idea of matrix
mechanics. Dirac was twenty-six years old when he discovered his equation.
(I have added the year of birth under the photos of people in this book so
you can also check the ages of others when referring to the bibliography and
publication dates therein.) Several years later this youthful trend made its way

An editor of Shizen He helped Tomonaga to prepare this book.
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to Japan. I therefore thought it worthwhile that this period be recorded by
somebody who passed his scientifically formative years during that time and
directly experienced part of the history. I therefore have augmented my articles
published in Shizen for more completeness and publish them as a volume in
this Shizen Selected Series.

After finishing this work I started to worry that somebody might ask, To which
readers and for what purpose did you write this book? This book has grown
while I indulged my tastes without worrying too much about the readers.

May 1974
Sin-itiro Tomonaga
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Thomas precession
MI/lller C 1952 The Theory ofRelativity (Oxford: Oxford University Press) § 22.
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[1980 trans Achuthan P and Venkatesan K General Principles ofQuantum Mechanics
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Lecture 12
The content of lecture 12 is mostly from my memory. Therefore. I just mention the following.

which I used to complement my memory.

Fierz M and Weisskopf V F ed 1960 Theoretical Physics in the Twentieth Century: A
Memorial Volume to Wolfgang Pauli ed (New York: Interscience).

Goudsmit S. A. 1972 Guess Work: The Discovery of the Electron Spin Delta 1577-91.
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encompassed by this book We found the following titles to be particularly enlightening and
helpful while prepanng this translation:

Brown L M, Pais A, and Pippard B ed 1995 Twentieth Century Physics. Vol 1-3 (London:
Institute of Physics and New York: American Institute of Physics)

Cahn R Nand Goldhaber G 1989 The Experimental Foundations of Particle Physics
(New York: Cambridge University Press)

Mehra J and Rechenberg H 1982-1987 The Historical Development ofQuantum Theory.
Vol 1-5 (New York: Spnnger)

Pais A 1986 Inward Bound: Of Matter and Forces in the Physical World (New York:
Oxford University Press)

Phillips M ed 1992 The Life and Times of Modem Physics: History of Physics ll:
Readings from Physics Today. Number Five (New York: American Institute of
Physics)

Schweber S S 1994 QED and the Men Who Made It: Dyson. Feynman. Schwinger, and
Tomonaga (Princeton: Princeton University Press)
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Weart S R and Phillips M ed 1985 History of Physics: Readings from Physics Today.
Number 2 (New York: American Institute of Physics)

I also wish to bring to the reader's attention that the Japanese biography of Tomonaga is now
available in English translation:

Matsui M and Ezawa H ed 1995; trans C Fujimoto and T Sano Sin-itiro Tomonaga: Life
ofa Japanese Physicist (Tokyo: MYU)]
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